Skip to main content
Log in

Percolative Transport and Cluster Diffusion Near and Below the Percolation Threshold of a Porous Polymeric Matrix

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this research was to develop a quantitative mass transport model to describe the release of a drug from a porous inert matrix dosage form near and below the percolation threshold for the system.

Methods

Cumulative release profiles were generated for a series of tablets composed of a binary mixture of varying amounts of non-conducting (poly(vinyl stearate)) and conducting (benzoic acid) components. The porous microstructure was analyzed using re-constructed three-dimensional images of leached microtomed tablet sections. Poly(vinyl stearate) was characterized for transport properties, molecular weight and thermal properties.

Results

Based on percolation theory, the binary matrix was determined to have a percolation threshold of 0.09 ± 0.02. Transport, which could not be explained by “classical” percolation theory or surface diffusion alone, was observed below the percolation threshold for the system.

Conclusions

A model describing transport near and below the percolation threshold in matrices composed of two phases, polymer and drug, was developed. The percolation model developed accounts for diffusion within the porous structure and through the inert, insoluble polymeric amorphous regions of the matrix. The low percolation threshold and subsequently high coordination was concluded to be due to the biphasic classical porous and nonclassical polymeric diffusional transport mechanisms associated with the system studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. E. Hastedt and J. L. Wright. Diffusion in porous materials above the percolation threshold. Pharm. Res. 7(9):893–901 (1990).

    Article  PubMed  CAS  Google Scholar 

  2. H. Leuenberger, B. D. Rohera, and Ch. Haas. Percolation theory—a novel approach to solid dosage form design. Int. J. Pharm. 38:109–115 (1987).

    Article  CAS  Google Scholar 

  3. C. Mallard, J. Coudane, I. Rault, and M. Vert. The use of additives to modulate the release of a sparingly water soluble drug entrapped in PLA50 microparticles. J. Microencapsul. 17(1):81–93 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. F. Zhang and J. W. McGinity. Properties of hot-melt extruded theophylline tablets containing poly(vinyl acetate). Drug Dev. Ind. Pharm. 26(9): 931–942 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. T. Ehtezazi, and C. Washington. Controlled release of macromolecules from PLA microspheres: using porous structure topology. J. Control. Release 68:361–372 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. I. Caraballo, M. Millán, A. Fini, L. Rodriguez, and C. Cavallari. Percolation thresholds in ultrasound compacted tablets. J. Control. Release 69:345–355 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. M. C. Soriano, I. Caraballo, M. Millan, R. T. Pinero, L. M. Melgoza, and A. M. Rabasco. Influence of two different types of excipient on drug percolation threshold. Int. J. Pharm. 174:63–69 (1998).

    Article  CAS  Google Scholar 

  8. L. M. Melgoza, I. Caraballo, J. Alvarez-Fuentes, M. Millán, and A. M. Rabasco. Int. J. Pharm. 170:169–177 (1998).

    Article  CAS  Google Scholar 

  9. L. M. Melgoza, A. M. Rabasco, J. Sandoval, and I. Caraballo. Estimation of the percolation thresholds in dextromethorphan hydrobromide matrices. Eur. J. Pharm. Sci. 12:453–459 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. J. D. Bonny and H. Leuenberger. Matrix type controlled release systems. I. Effect of percolation on drug dissolution kinetics. Pharm. Acta Helv. 66:160–164 (1991).

    PubMed  CAS  Google Scholar 

  11. J. D. Bonny and H. Leuenberger. Matrix type controlled release systems. II. Percolation effects in non-swellable matrices. Pharm. Acta Helv. 68:25–33 (1993).

    Article  CAS  Google Scholar 

  12. I. Caraballo, M. Fernández-Arévalo, M. A. Holgado, and A. M. Rabasco. Percolation theory: application to the study of the release behaviour from inert matrix systems. Int. J. Pharm. 96:175–181 (1993).

    Article  CAS  Google Scholar 

  13. I. Caraballo, J. Alvarez-Fuentes, L. M. Melgoza, M. Millán, M. A. Holgado, A. M. Rabasco, and M. Fernandez-Arevalo. Validation study of the conductometrical analysis. Application to the drug release studies from controlled release systems. J. Pharm. Biomed. Anal. 18:281–285 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. I. Caraballo, L. M. Melgoza, J. Alvarez-Fuentes, M. C. Soriano, and A. M. Rabasco. Design of controlled release inert matrices of naltrexone hydrochloride based on percolation concepts. Int. J. Pharm. 181:23–30 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. H. Leuenberger. New trends in the production of pharmaceutical granules: the classical batch concept and the problem of scale-up. Eur. J. Pharm. Biopharm. 52:279–288 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. H. Leuenberger and L. Ineichen. Percolation theory and physics of compression. Eur. J. Pharm. Biopharm. 44:269–272 (1997).

    Article  CAS  Google Scholar 

  17. T. Kuny and H. Leuenberger. Compression behaviour of the enzyme β-galactosidase and its mixture with microcrystalline cellulose. Int. J. Pharm. 260:137–147 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. C. Imbert, P. Tchoreloff, B. Leclerc, and G. Couarraze. Indices of tableting performance and application of percolation theory to powder compaction. Eur. J. Pharm. Biopharm. 44:273–282 (1997).

    Article  CAS  Google Scholar 

  19. A. F. Rime, D. Massuelle, F. Kubel, H. R. Hagemann, and E. Doelker. Compressibility and compactibility of powdered polymers: poly(vinyl chloride) powders. Eur. J. Pharm. Bipharm. 44:315–322 (1997).

    CAS  Google Scholar 

  20. T. Zhou, H. Lewis, R. E. Foster, and S. P. Schwendeman. Development of a multiple-drug delivery implant for intraocular management of proliferative vitreoretinopathy. J. Control. Release 55:281–295 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. M. Mestiri, J. P. Benoit, P. Hernigou, J. P. Devissaguet, and F. Puisieux. Cisplatin-loaded poly(methyl methacrylate) implants: a sustained drug delivery system. J. Control. Release 33:107–113 (1995).

    Article  CAS  Google Scholar 

  22. S. R. Ellis. Porous Alumina Ceramics in Drug Delivery: Processing Concerns and Percolation Models. Ph.D. Thesis, School of Pharmacy. University of Wisconsin-Madison, WI (1990).

  23. C. D. Mitescu, M. Allain, E. Guyon, and J. P. Clerc. Electrical conductivity of finite-size percolation networks. J. Phys. A: Math. Gen. 15:2523–2531 (1982).

    Article  Google Scholar 

  24. G. G. Jerauld, L. E. Scriven, and H. T. Davis. Percolation and conduction on the 3D Voronoi and regular networks: a second case study in topological disorder. J. Phys. C: Solid State Phys. 17:3429–3439 (1984).

    Article  Google Scholar 

  25. D. Stauffer. Introduction to Percolation Theory. Taylor & Francis, Philadelphia, 1985.

    Google Scholar 

  26. A. L. Efros. Physics and Geometry of Disorder, Percolation Theory. Mir Publishers, Moscow, 1986.

    Google Scholar 

  27. A. Margolina, Z. V. Djordjevic, D. Stauffer, and H. E. Stanley. Corrections to scaling for branched polymers and gels. Phys. Rev. B. 28:1652–1654 (1983).

    Article  CAS  Google Scholar 

  28. J. E. Hastedt. Diffusional release from a porous polymeric matrix - a model based on percolation theory. M.S. Thesis, School of Pharmacy. University of Wisconsin-Madison, WI (1987).

  29. J. E. Hastedt. Percolative transport and cluster diffusion near and below the percolation threshold of a porous polymeric system. Ph.D. Thesis, School of Pharmacy. University of Wisconsin-Madison, WI (1990).

  30. KODAK Technical Pan Film 2415/6415 Information. KODAK Publication No. P-255, M6A068 Minor Rev. 2-86-BX, Eastman KODAK Co., Rochester, New York (1985).

  31. J. Crank. The Mathematics of Diffusion Oxford University Press, New York (1975).

    Google Scholar 

  32. W. J. Burlant and A. Adicoff. Polymerization of vinyl stearate by high energy electrons. J. Polym. Sci. 27:269–274 (1958).

    Article  CAS  Google Scholar 

  33. T. Higuchi. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. 50(10):874–875 (1961).

    PubMed  CAS  Google Scholar 

  34. T. Higuchi. Mechanism of sustained-action medication. J. Pharm. Sci. 52(12):1145–1149 (1963).

    PubMed  CAS  Google Scholar 

  35. R. A. Siegel. Modeling of drug release from porous polymers. In M. Rosoff (ed.), Controlled Release of Drug: Polymers and Aggregate Systems, VCH Publishers, New York, 1989, pp. 1–51.

    Google Scholar 

  36. G. Grimmett. Percolation. Springer, Berlin Heidelberg New York, 1989.

    Google Scholar 

  37. S. Kirkpatrick. Percolation and conduction. Rev. Mod. Phys. 45:574–588 (1973).

    Article  Google Scholar 

  38. S. Reyes and K. F. Jensen. Percolation concepts in modelling of gas–solid reactions. I. Application to char gasification in the kinetic regime. Chem. Eng. Sci. 41:333–343 (1986).

    Article  CAS  Google Scholar 

  39. J. Adler, A. Aharony, and D. Stauffer. First exit time of termites and random super-normal conductor networks. J. Phys. A: Math. Gen. 18:L129–L136 (1985).

    Article  Google Scholar 

  40. A. Bunde, A. Coniglio, D. C. Hong, and H. E. Stanley. Transport in a two-component randomly composite material: scaling theory and computer simulations of termite diffusion near the superconducting limit. J. Phys. A: Math. Gen. 18:L137–L144 (1985).

    Article  Google Scholar 

  41. S. Kirkpartick. In J.C. Garland and D. B. Tanner (eds) AIP Conference Proceedings, No. 40, American Institute of Physics, New York, 1978.

  42. C. Domb and N. W. Dalton. Crystal statistics with long-range forces I. The equivalent neighbor model. Proc. Phys. Soc. 89:859–871 (1966).

    Article  CAS  Google Scholar 

  43. P. Dean and N. F. Bird. Monte Carlo Studies of the Percolation Properties of Two- and Three-Dimensional Lattices, National Physics Lab. Math Div. Ma61, Teddington, Middlesex, England, 1966.

  44. H. Winterfeld. Percolation and conduction phenomena in disordered composite media. Ph.D. Thesis, University of Minnesota, Ann Arbor, MN, 1981.

  45. M. Bohdanecký and M. Netopilík. The Mark-Houwink-Kuhn-Sakurada exponent of polymers with long side groups: is a 0 = 1/2 a reliable criterion of the theta state? Polymer 36:3377–3384 (1995).

    Article  Google Scholar 

  46. W. S. Port, J. E. Hansen, E. F. Jordan Jr., T. J. Dietz, and D. Swern. Polymerizable derivatives of long-chain fatty acids. IV. Vinyl esters. J. Polym. Sci. VII:207–220 (1946).

    Google Scholar 

  47. F. M. Aliev, K. S. Pojivilko, and V. N. Zgonnik. SAXS and DSC: studies of surface and size effects for poly(vinyl stearate). Eur. Polym. J. 26:101–104 (1990).

    Article  CAS  Google Scholar 

  48. D. A. Lutz and L. P. Witnauer. Crystallinity of poly(vinyl stearate). J. Polym. Sci., B, Polym. Lett. 2:31–33 (1964).

    Article  Google Scholar 

  49. C. A. Oksanen and G. Zografi. The relationship between the glass transition temperature and water vapor absorption by poly(vinylpyrrolidone). Pharm. Res. 7:654–657 (1990).

    Article  PubMed  CAS  Google Scholar 

  50. M. Nilsson and M. Str∅mme. Electrodynamic investigations of conduction processes in humid microcrystalline cellulose tablets. J. Phys. Chem. B. 109:5450–5455 (2005).

    Article  CAS  Google Scholar 

  51. J. Ricke and G. Reichenauer. Structural investigation of SiO2—Aerogels. J. Non-Cryst. Solids 95–96:1135–1142 (1987).

    Google Scholar 

  52. D. Buttner, F. Loffler, R. Caps, and J. Fricke. Investigation of solid thermal conduction in evacuated load-bearing fibrous insulations. High Temp. High Press. 18:537–543 (1986).

    Google Scholar 

Download references

Acknowledgments

This research was funded in part by the American Chemical Society Chapter of the Petroleum Research Foundation, Glaxo Inc., and the Burroughs Wellcome Fund. The authors would like to thank the constructive feedback provided by the reviewers of this paper. We would also like to express our gratitude to Professor George Zografi for his constant encouragement, support, and outstanding contributions to our scientific field. J.E.H. wishes to dedicate this work to her father, Harold, and husband, Jamshed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne E. Hastedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hastedt, J.E., Wright, J.L. Percolative Transport and Cluster Diffusion Near and Below the Percolation Threshold of a Porous Polymeric Matrix. Pharm Res 23, 2427–2440 (2006). https://doi.org/10.1007/s11095-006-9072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9072-8

Key words

Navigation