Skip to main content
Log in

Electroluminescence from n-ZnO microdisks/p-GaN heterostructure

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The light emitting diode structure based on p-GaN film/n-ZnO microdisks quasiarray heterojunction was fabricated. It is shown that the epitaxial quality of p-GaN films upon growth from the vapor phase can lead to growth of the hexagonal microdisk ZnO rather than the vertical nanorods. The density of the microdisks changed across the substrate surface. ZnO hexagonal microdisks are characterized by the average height of about 5 μm with diameters ranging from 25 μm up to 60 μm. The turn-on voltage of the heterojunction of ZnO/GaN (disks/film) is around 5 V. The diode-ideality factor was estimated to be of around 30. The large values of the ideality factors indicate a high density of trap states and also may be connected with the quality of the contacts to the pn junction. The electroluminescence (EL) spectrum acquired from the p-GaN film/n-ZnO microdisks junction exhibited the bands with maxima at 366, 394 and 495 nm. On the basis of the data of X-ray diffraction, electrical and optical studies these peaks were associated with GaN near-band-edge (NBE) emission, ZnO NBE emission, and emission from the defect levels in ZnO, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adam, R.E., Alnoor, H., Elhag, S., Nur, O., Willander, M.: Zinc oxide nanostructures and its nano-compounds for efficient visible light photo-catalytic processes. Proc. SPIE. 10105, 101050X (2017). https://doi.org/10.1117/12.2254872

  • Alnoor, H., Pozina, G., Khranovskyy, V., Liu, X., Iandolo, D., Willander, M., Nur, O.: Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes. J. Appl. Phys. 119, 165702 (2016)

  • Alnoor, H., Pozina, G., Willander, M., Nur, O.: Seed layer synthesis effect on the concentration of interface defects and emission spectra of ZnO nanorods/p-GaN light-emitting diode. Phys. Status Solidi (a) 214, 1600333 (2017). https://doi.org/10.1002/pssa.201600333

  • Alvi, N.H., Hasan, K., Nur, O., Willander, M.: The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res. Lett. 6, 130 (2011a)

  • Alvi, N.H., Usman, S.M., Hussain, S., Nur, O., Willander, M.: Fabrication and comparative optical characterization of n-ZnO nanostructures (nanowalls, nanorods, nanoflowers and nanotubes)/p-GaN white-light-emitting diodes. Scr. Mater. 64, 697–700 (2011b)

    Article  Google Scholar 

  • Baek, H., Lee, C.-H., Chung, K., Yi, G.-C.: Epitaxial GaN microdisk lasers grown on graphene microdots. Nano Lett. 13, 2782–2785 (2013)

    Article  ADS  Google Scholar 

  • Bano, N., Zaman, S., Zainelabdin, A., Hussain, S., Hussain, I., Nur, O., Willander, M.: ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method. J. Appl. Phys. 108, 043103 (2010)

  • Behzadirad, M., Nami, M., Wostbrock, N., Kouhpanji, M.R.Z., Feezell, D.F., Brueck, S.R.J., Busani, T.: Scalable top-down approach tailored by interferometric lithography to achieve large-area single-mode GaN nanowire laser arrays on sapphire substrate. ASC Nano. 12, 2373–2380 (2018)

    Article  Google Scholar 

  • Brillson, L.J., Lu, Y.: ZnO Schottky barriers and ohmic contacts. J. Appl. Phys. 109, 121301-1–121301-33 (2011)

    Article  ADS  Google Scholar 

  • Chang, S.P., Chuang, R.W., Chang, S.J., Chiou, Y.Z., Lu, C.Y.: MBE n-ZnO/MOCVD p-GaN heterojunction light-emitting diode. Thin Solid Films 517, 5054–5056 (2009)

    Article  ADS  Google Scholar 

  • Choi, Y., Kang, J., Hwang, D., Park, S.: Recent advances in ZnO-based light-emitting diodes. IEEE Trans. Electron Devices 57, 26–41 (2010)

    Article  ADS  Google Scholar 

  • Chu, S., Lim, J.H., Mandalapu, L.J., Yang, Z., Li, L., Liu, J.L.: Sb-doped p-ZnO/Ga doped n-ZnO homojunction ultraviolet light emitting diodes. Appl. Phys. Lett. 92, 152103 (2008)

  • Gokarna, A., Pavaskar, N.R., Sathaye, S.D., Ganesan, V., Bhoraskar, S.V.: Electroluminescence from heterojunctions of nanocrystalline CdS and ZnS with porous silicon. J. Appl. Phys. 92, 2118–2124 (2002)

    Article  ADS  Google Scholar 

  • Huang, H., Fang, G., Li, S., Long, H., Mo, X., Wang, H., Li, Y., Jiang, Q., Carroll, D.L., Wang, J., Wang, M., Zhao, X.: Ultraviolet/orange bicolor electroluminescence from an n-ZnO/n-GaN isotype heterojunction light emitting diode. Appl. Phys. Lett. 99, 263502 (2011)

  • Hwang, D.-K., Kang, S.-H., Lim, J.-H., Yang, E.-J., Oh, J.-Y., Yang, J.-H., Parka, S.-J.: p-ZnO/n-GaN heterostructure ZnO light-emitting diodes. Appl. Phys. Lett. 86, 222101 (2005)

  • Jagadish, C., Pearton, S.: Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications. Elsevier Science, Hong Kong (2006)

    Google Scholar 

  • Kapustianyk, V., Turko, B., Luzinov, I., Rudyk, V., Tsybulskyi, V., Malynych, S., Rudyk, Yu., Savchak, M.: LEDs based on p-type ZnO nanowires synthesized by electrochemical deposition method. Phys. Status Solidi (c) 11, 1501–1504 (2014)

    Article  ADS  Google Scholar 

  • Kapustianyk, V., Turko, B., Rudyk, V., Rudyk, Y., Rudko, M., Panasiuk, M., Serkiz, R.: Effect of vacuumization on the photoluminescence and photoresponse decay of the zinc oxide nanostructures grown by different methods. Opt. Mater. 56, 71–74 (2016)

    Article  ADS  Google Scholar 

  • Kim, K., Moon, T., Kim, J., Kim, S.: Electrically driven lasing in light-emitting devices composed of n-ZnO and p-Si nanowires. Nanotechnology 22, 245203 (2011)

  • Kitamura, K., Kawazoe, T., Ohtsu, M.: Homojunction-structured ZnO light-emitting diodes fabricated by dressed-photon assisted annealing. Appl. Phys. B 107, 293–299 (2012)

    Article  ADS  Google Scholar 

  • Klingshirn, C.: ZnO: from basics towards applications. Phys. Status Solidi (b) 244, 3027–3073 (2007)

    Article  ADS  Google Scholar 

  • Kong, J.Y., Chu, S., Olmedo, M., Li, L., Yang, Z., Liu, J.L.: Dominant ultraviolet light emissions in packed ZnO columnar homojunction diodes. Appl. Phys. Lett. 93, 132113 (2008)

  • Le, H.Q., Chua, S.J., Fitzgerald, E., Loh, K.P.: ZnO nanorods grown on p-GaN using hydrothermal synthesis and its optoelectronic devices application. Adv. Mater. Micro NanoSyst. 1, 1–6 (2007)

    Google Scholar 

  • Lee, Y.-J., Yang, Z.-P., Lo, F.-Y., Siao, J.-J., Xie, Z.-H., Chuang, Y.-L., Lin, T.-Y., Sheu, J.-K.: Slanted n-ZnO/p-GaN nanorod arrays light-emitting diodes grown by oblique-angle deposition. APL Mater. 2, 056101 (2014)

  • Li, C., Hurtado, A., Wright, J.B., Xu, H., Liu, S., Luk, T.S., Brener, I., Brueck, S.R.J., Wang, G.T.: Gallium nitride nanotube lasers. In: Conference on Lasers and Electro-Optics (2014). https://doi.org/10.1364/CLEO_SI.2014.SW1G.3

  • Litton, C.W., Reynolds, D.C., Collins, T.C.: Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, 1st edn. Wiley, Chichester (2011)

    Book  Google Scholar 

  • Lupan, O., Pauporte, T., Viana, B.: Low-voltage UV-electroluminescence from ZnO-nanowire array/p-GaN light-emitting diodes. Adv. Mater. 22, 3298–3302 (2010)

    Article  Google Scholar 

  • Mandalapu, L.J., Yang, Z., Chu, S., Liu, J.L.: Ultraviolet emission from Sb-doped p-type ZnO based heterojunction light-emitting diodes. Appl. Phys. Lett. 92, 122101 (2008)

  • Monemar, B., Khromov, S., Pozina, G., Paskov, P., Bergman, P., Hemmingsson, C., Hultman, L., Amano, H., Avrutin, V., Li, X., Morkoc, H.: Luminescence of acceptors in Mg-doped GaN. Jpn. J. Appl. Phys. 52, 08JJ03 (2013)

  • Morkoc, H., Ozgur, U.: Zinc Oxide: Fundamentals, Materials and Device Technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2009)

    Book  Google Scholar 

  • Nakahara, K., Akasaka, S., Yuji, H., Tamura, K., Fujii, T., Nishimoto, Y., Takamizu, D., Sasaki, A., Tanabe, T., Takasu, H., Amaike, H., Onuma, T., Chichibu, S.F., Sukazaki, A., Ohtomo, A., Kawasaki, M.: Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates. Appl. Phys. Lett. 97, 013501 (2010)

  • Nickel, N.H., Terukov, E.: Zinc Oxide—A Material for Micro- and Optoelectronic Applications. Springer, Dordrecht (2005)

    Book  Google Scholar 

  • Ozgur, U., Alivov, Y., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S., Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301-1–041301-103 (2005)

    Article  ADS  Google Scholar 

  • Ryu, Y.R., Lee, T.-S., Lubguban, J.A., White, H.W., Kim, B.J., Park, Y.S., Youn, C.J.: Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Appl. Phys. Lett. 88, 241108 (2006)

  • Serban, E.A., Palisaitis, J., Yeh, C.-C., Hsu, H.-C., Tsai, Y.-L., Kuo, H.-C., Junaid, M., Hultman, L., Persson, P.O.A., Birch, J., Hsiao, C.-L.: Selective-area growth of single crystal wurtzite GaN nanorods on SiOx/Si(001) substrates by reactive magnetron sputter epitaxy exhibiting single-mode lasing. Sci. Rep. 7, 12701 (2017)

  • Sun, J.C., Zhao, J.Z., Liang, H.W., Bian, J.M., Hu, L.Z., Zhang, H.Q., Liang, X.P., Liu, W.F., Du, G.T.: Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO:As/GaAs structure. Appl. Phys. Lett. 90, 121128 (2007)

  • Sun, H., Zhang, Q., Zhang, J., Deng, T., Wu, J.: Electroluminescence from ZnO nanowires with a p-ZnO film/n-ZnO nanowire homojunction. Appl. Phys. B 90, 543–546 (2008)

    Article  ADS  Google Scholar 

  • Toporovska, L., Hrytsak, A., Turko, B., Rudyk, V., Tsybulskyi, V., Serkiz, R.: Photocatalytic properties of zinc oxide nanorods grown by different methods. Opt. Quant. Electron. 49, 408 (2017)

  • Wajid, A.: On the accuracy of the quartz-crystal microbalance (QCM) in thin-film depositions. Sens. Actuators A 63, 41–46 (1997)

    Article  Google Scholar 

  • Wang, Z.L.: ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng. 64, 33–71 (2009)

    Article  Google Scholar 

  • Xu, S., Wang, Z.L.: One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013–1098 (2011)

    Article  Google Scholar 

  • Yi, S.N., Ahn, H.S., Yang, M., Kim, K.H., Kim, H., Yi, J.Y., Chang, J.H., Kim, H.S.: Effect of interface on the optical properties of GaN grown by HVPE. J. Korean Phys. Soc. 45, S598–S600 (2004)

    Google Scholar 

  • Yu, Q.X., Xu, B., Wu, Q.H., Liao, Y., Wang, G.Z., Fang, R.C.: Optical properties of ZnO/GaN heterostructure and its near-ultraviolet light-emitting diode. Appl. Phys. Lett. 83, 4713–4715 (2003)

    Article  ADS  Google Scholar 

  • Zhang, X.M., Lu, M.-Y., Zhang, Y., Chen, L.-J., Wang, Z.L.: Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 21, 2767–2770 (2009)

    Article  Google Scholar 

  • Zhao, J.L., Teo, K.L., Zheng, K., Sun, X.W.: Color tunable electroluminescence and resistance switching from a ZnO-nanorod–TaOxp-GaN heterojunction. Nanotechnology 27, 115204 (2016)

Download references

Acknowledgements

The publication contains the results of research conducted with the grant support of the State Fund for Fundamental Research of Ukraine under the competition project F76/100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Turko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turko, B., Nikolenko, A., Sadovyi, B. et al. Electroluminescence from n-ZnO microdisks/p-GaN heterostructure. Opt Quant Electron 51, 135 (2019). https://doi.org/10.1007/s11082-019-1853-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1853-5

Keywords

Navigation