Skip to main content
Log in

Room-temperature nanoimprint lithography to fabricate TiO2 subwavelength phase retarder

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A room-temperature nanoimprint lithography (RT-NIL) is presented to fabricate subwavelength phase retarders by combining high-refractive-index TiO2 material, which shows some unique advantages in terms of lower cost, higher efficiency and better performances. The TiO2 subwavelength phase retarders are designed and analyzed by the rigorous coupled wave analysis, where the phase retardations of 130° to 60° from 370 to 780 nm are achieved. The phase retarders are fabricated by the RT-NIL, where the fabrication process is described in details, and SEM images of fabricated gratings are shown. Further, phase retardations and transmittances of the fabricated phase retarders are measured, which shows that the transmittances of TE polarization and TM polarization are stronger than 76 % and 85 % in visible region respectively, and the measured phase retardations agree well with the theoretical results, and the proposed RT-NIL technique is expected to find wide applications in fabrication of subwavelength optical devices in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chimento, P., Kuzmin, N., Bosman, J., Alkemade, P., Hooft, G., Eliel, E.: A subwavelength slit as a quarter-wave retarder. Opt. Express 19, 24219–24227 (2011)

    Article  ADS  Google Scholar 

  • Choi, J.H., Jo, H.B., Choi, H.J., Lee, H.: Fabrication of TiO2 nano-to-microscale structures using UV nanoimprint lithography. Nanotechnology 24, 195301 (2013)

    Article  ADS  Google Scholar 

  • Chou, S., Krauss, P., Renstrom, P.: Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996)

    Article  ADS  Google Scholar 

  • Gorodetski, Y., Lombard, E., Drezet, A., Genet, C., Ebbesen, T.W.: A perfect plasmonic quarter-wave plate. Appl. Phys. Lett. 101, 201103 (2012)

    Article  ADS  Google Scholar 

  • Isano, T., Kaneda, Y., Iwakami, N., Ishizuka, K., Suzuki, N.: Fabrication of half-wave plates with subwavelength structures. Jpn. J. Appl. Phys. 43, 5294–5296 (2004)

    Article  ADS  Google Scholar 

  • Isano, T., Kaneda, Y., Kadoshima, T., Ukaji, E., Sato, M., Ishizuka, K., Suzuki, N.: Improvement of phase retardation of wave plate with subwavelength structures by heat treatment. Jpn. J. Appl. Phys. 44, 4984–4988 (2005)

    Article  ADS  Google Scholar 

  • Khoo, E., Li, E., Crozier, K.: Plasmonic wave plate based on subwavelength nanoslits. Opt. Lett. 36(13), 2498–2500 (2011)

    Article  ADS  Google Scholar 

  • Moharam, M.G., Gaylord, T.K.: Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. A 71(7), 811–818 (1981)

    Article  ADS  Google Scholar 

  • Mori, T., Yamashita, N., Kasa, H., Fukumi, K., Kintaka, K., Nishii, J.: Periodic sub-wavelength structures with large phase retardation fabricated by glass nanoimprint. J. Ceram. Soc. Jpn. 117(10), 1134–1137 (2009)

    Article  Google Scholar 

  • Päivänranta, B., Passilly, N., Pietarinen, J., Laakkonen, P., Kuittinen, M., Tervo, J.: Low-cost fabrication of form-birefringent quarter-wave plates. Opt. Express 16(21), 16334–16342 (2008)

    Article  ADS  Google Scholar 

  • Richter, I., Sun, P.C., Xu, F., Fainman, Y.: Design considerations of form birefringent microstructures. Appl. Opt. 34(14), 2421–2429 (1995)

    Article  ADS  Google Scholar 

  • Saleem, M., Honkanen, S., Turunen, J.: Effect of substrate overetching and heat treatment of titanium oxide waveguide gratings and thin films on their optical properties. Appl. Opt. 52, 422–432 (2013)

    Article  ADS  Google Scholar 

  • Wilson, B.K.: Variable wave plate via tunable form-birefringent structures. J. Microelectromech. Syst. 17(4), 1039–1046 (2008)

    Article  Google Scholar 

  • Yamada, I., Yamashita, N., Einishi, T., Saito, M., Fukumi, K., Nishii, J.: Design and fabrication of an achromatic infrared wave plate with Sb–Ge–Sn–S system chalcogenide glass. Appl. Opt. 52(7), 1377–1382 (2013)

    Article  ADS  Google Scholar 

  • Yu, C.C., Chen, Y.T., Wan, D.H., Chen, H.L., Ku, S.L., Chou, Y.F.: Using one-step, dual-side nanoimprint lithography to fabricate low-cost, highly flexible wave plates exhibiting broadband antireflection. Electrochem. Soc. 158(6), J195–J199 (2011)

    Article  Google Scholar 

  • Zhu, Z.D., Bai, B., Duan, H.G., Zhang, H.S., Zhang, M.Q., You, O.B., Li, Q.Q., Tan, Q.F., Wang, J., Fan, S.S., Jin, G.F.: M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps. Small 10(8), 1603–1611 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by National Science Foundation of China (Nos. 61475021 and 61108047), Beijing Natural Science Foundation (4152015), the Program for New Century Excellent Talents in University, China (No. NCET-13-0667) and Beijing Top Young Talents Support Program (No. CIT&TCD201404113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhehai Zhou, Zhendong Zhu or Lianqing Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhu, Z. & Zhu, L. Room-temperature nanoimprint lithography to fabricate TiO2 subwavelength phase retarder. Opt Quant Electron 48, 2 (2016). https://doi.org/10.1007/s11082-015-0275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-015-0275-2

Keywords

Navigation