Skip to main content
Log in

The multiscale large deviation spectrum based on higher moments for financial time series

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this letter, based on large deviations theory, we propose to use higher moments (e.g., skewness, kurtosis) to investigate the multifractal features of large deviations spectrum. It is different from the estimation of the spectrum using another roughness exponent, such as oscillation-based grain exponent. When using statistical skewness and kurtosis as roughness exponent, the traditional normalization procedure of signals fails. To overcome this problem, a new approach is proposed. The large deviations spectrum on both artificial and financial time series is estimated. Comparing with another multifractal analysis, we verify that large deviations spectrum overcomes the limitations of Legendre spectrum, and the proposed method is able to reveal significant information that remains hidden with Legendre spectrum. The properties of scaling behavior using a modified scaling/non-scaling criterion are discussed. Meanwhile, we study the scaling behavior of time series and quantify the presence or absence of scale invariance of financial signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kaizoji, T., Sornette, D.: Market bubbles and crashes (2009). arXiv:0812.2449

  2. Pham, H.: Large deviations in mathematical finance. In: Third SMAI European Summer School in Financial Mathematics (2010)

  3. Yin, Y., Shang, P.J.: Weighted multiscale permutation entropy of financial time series. Nonlinear Dyn. 78, 2921–2939 (2014)

    Article  MathSciNet  Google Scholar 

  4. Yin, Y., Shang, P.J.: Multifractal cross-correlation analysis of traffic time series based on large deviation estimates. Nonlinear Dyn. 81, 1779–1794 (2015)

    Article  Google Scholar 

  5. Xiong, H., Shang, P.J.: Weighted multifractal cross-correlation analysis based on Shannon entropy. Commun. Nonlinear Sci. 30, 268–283 (2016)

    Article  MathSciNet  Google Scholar 

  6. Machado, J.A.T.: Relativistic time effects in financial dynamics. Nonlinear Dyn. 75(4), 735–744 (2014)

    Article  MathSciNet  Google Scholar 

  7. Kostic, S., Franovic, I., Perc, M., Nebojsa Vasovic, N., Todorovic, K.: Triggered dynamics in a model of different fault creep regimes. Sci. Rep. 4, 5401 (2014)

    Article  Google Scholar 

  8. Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.E.: Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316, 87–114 (2002)

    Article  Google Scholar 

  9. Ivanov, P.C., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Struzik, Z., Stanley, H.E.: Multifractality in human heartbeat dynamics. Nature 399, 461–465 (1999)

    Article  Google Scholar 

  10. Sassi, R., Signorini, M.G., Cerutti, S.: Multifractality and heart rate variability. Chaos 19(2), 028507 (2009)

    Article  MathSciNet  Google Scholar 

  11. Mandelbrot, B.: Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. Comptes Rendus de l’Academie des Sciences, Série A. 278(289–292), 355–358 (1974)

    MATH  Google Scholar 

  12. Meyer, M., Stiedl, O.: Self-affine fractal variability of human heartbeat interval dynamics in health and disease. Eur. J. Appl. Physiol. 90, 305–316 (2003)

    Article  Google Scholar 

  13. Loiseau, P., Médigue, C., Gonçalves, P., Attia, N., Seuret, S., Cottin, F., Chemla, D., Sorine, M., Barral, J.: Large deviations estimates for the multiscale analysis of heart variability. Physica A 391, 5658–5671 (2012)

    Article  Google Scholar 

  14. Jaffard, S.: Wavelet techniques in multifractal analysis. In: Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot. Proceedings of Symposia in Pure Mathematics, vol. 72, pp. 91–152 (2004)

  15. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  Google Scholar 

  16. Xiong, H., Shang, P.J.: Detrended fluctuation analysis of multivariate time series. Commun. Nonlinear Sci. 42, 12–21 (2017)

    Article  MathSciNet  Google Scholar 

  17. Shi, W.B., Shang, P.J., Wang, J.: Large deviations estimates for the multiscale analysis of traffic speed time series. Physcia A 421, 562–570 (2015)

    Article  Google Scholar 

  18. Riedi, R.: Multifractal processes. In: Long Range Dependence: Theory and Applications, Birkhäuser, pp. 625–715 (2002)

  19. Jaffard, S., Lashermes, B., Abry, P.: Wavelet leaders in multifractal analysis. In: Wavelet Analysis and Applications. Birkhäuser, pp. 219–264 (2006)

  20. Rand, D.: The singularity spectrum f (\(\alpha \)) for cookie-cutters. Ergod. Theor. Dyn. Syst. 9, 527–541 (1989)

    Article  MathSciNet  Google Scholar 

  21. Jaffard, S.: Multifractal formalism for functions. i. Results valid for all functions. ii. Self-similar functions. SIAM J. Math. Anal. 28, 944–970 & 971–998 (1997)

    Article  MathSciNet  Google Scholar 

  22. Barral, J., Jin, X.: Multifractal analysis of complex random cascades. Commun. Math. Phys. 219, 129–168 (2010)

    Article  MathSciNet  Google Scholar 

  23. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, Berlin (1998)

    Book  Google Scholar 

  24. Riedi, R., Lévy, Véhel, J.: Multifractal properties of TCP traffic: a numerical study. Technical Report. 3129, INRIA (1997)

  25. Canus, C., Lévy, Véhel, J.: Tricot C. Continuous large deviation multifractal spectrum: definition and estimation. In: Novak, M. (ed.) Proceedings of Fractal 98 Conference: Fractals and Beyond: Complexities in the Sciences, pp. 117–128

  26. Véhel, J.L., Tricot, C.: On various multifractal spectra. Birkhäuser Basel. 57, 23–42 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Barral, J., Gonçalves, P.: On the estimation of the large deviations spectrum. J. Stat. Phys. 144, 1256–1283 (2011)

    Article  MathSciNet  Google Scholar 

  28. Granger, C.W.J., Joyeu, R.: An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1(1), 15–29 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The financial supports from the funds of the Fundamental Research Funds for the Central Universities (2018JBZ104), the China National Science (61771035), the Beijing National Science (4162047) and China Postdoctoral Science Foundation (043206005) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Shi, W. & Shang, P. The multiscale large deviation spectrum based on higher moments for financial time series. Nonlinear Dyn 94, 597–613 (2018). https://doi.org/10.1007/s11071-018-4379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4379-7

Keywords

Navigation