Skip to main content
Log in

A constraint-following control for uncertain mechanical systems: given force coupled with constraint force

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel constraint-following control for uncertain mechanical systems is proposed. In mechanical systems, certain given forces may arise due to the constraint forces, which means the given forces are coupled with the constraint forces. By using the second-order form of the constraints, the given forces are decoupled explicitly. The uncertainty of the mechanical system is time-varying and bounded. But its bound is unknown. A series of adaptive parameters are invoked to estimate the bound information of the uncertainty in virtue of state feedback. Based on the estimated bound information, a robust control is designed to render the mechanical system an approximate constraint-following. The system performance under the control is guaranteed as uniform boundedness and uniform ultimate boundedness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen, Y.H.: Constraint-following servo control design for mechanical systems. J. Vib. Control 15(3), 369–389 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pars, L.A.: A Treatise on Analytical Dynamics. OX Bow Press, Connecticut (1979)

    MATH  Google Scholar 

  3. Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Plenum, New York (1977)

    Book  MATH  Google Scholar 

  4. Whittaker, E.T.: A Treatise on The Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  5. Papastavridis, J.G.: Analytical Mechanics: A Comprehensive Treatise on The Dynamics of Constrained Systems; for Engineers, Physicists, and Mathematicians. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  6. Fantoni, I., Lozano, R.: Nonlinear Control for Underactuated Mechanical Systems. Springer, New York (2001)

    MATH  Google Scholar 

  7. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  8. Udwadia, F.E.: A new perspective on the tracking control of nonlinear structural and mechanical systems. Proc. Math. Phys. Eng. Sci. 459(2035), 1783–1800 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jin, X., Wang, S., Yang, G., et al.: Robust adaptive hierarchical insensitive tracking control of a class of leader-follower agents. Inf. Sci. 406–407, 234–247 (2017)

    Article  Google Scholar 

  10. Jin, X., He, Y.: Finite-time robust fault-tolerant control against actuator faults and saturations. IET Control Theory Appl. 11(4), 550–556 (2017)

    Article  MathSciNet  Google Scholar 

  11. Shen, H., Huang, X., Zhou, J., et al.: Global exponential estimates for uncertain Markovian jump neural networks with reaction–diffusion terms. Nonlinear Dyn. 69(1–2), 473–486 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Shen, H., Ju, H., Wu, Z.: Finite-time synchronization control for uncertain Markov jump neural networks with input constraints. Nonlinear Dyn. 77(4), 1709–1720 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Y.H., Zhang, X.: Adaptive robust approximate constraint-following control for mechanical systems. J. Franklin Inst. 347(1), 69–86 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun, H., Zhao, H., Zhen, S., et al.: Application of the Udwadia–Kalaba approach to tracking control of mobile robots. Nonlinear Dyn. 83(1–2), 1–12 (2015)

    MathSciNet  Google Scholar 

  15. Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, Reading (1982)

    MATH  Google Scholar 

  16. Gantmacher, L.: Lectures in Analytical Mechanics. Mir Publishing, Mosocow (1970)

    Google Scholar 

  17. Greenwood, D.T.: Classical Dynamics. Dover, New York (1997)

    Google Scholar 

  18. Shang, W., Cong, S.: Adaptive compensation of dynamics and friction for a planar parallel manipulator with redundant actuation. In: Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics, pp. 507–512 (2010)

  19. Hao, R., Wang, J., Zhao, J., et al.: Observer-based robust control of 6-DOF parallel electrical manipulator with fast friction estimation. IEEE Trans. Autom. Sci. Eng. 13(3), 1399–1408 (2016)

    Article  Google Scholar 

  20. Chen, Y.H.: Second order constraints for equations of motion of constrained systems. IEEE/ASME Trans. Mechatron. 3(4), 240–248 (1998)

    Article  Google Scholar 

  21. Chen, Y.H., Leitmann, G., Chen, J.S.: Robust control for rigid serial manipulators: a general setting. In: Proceedings of the 1998 American Control Conference, vol. 2, pp. 912–916 (1998)

  22. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, New York (1996)

    Book  MATH  Google Scholar 

  23. Kalaba, R.E., Udwadia, F.E.: Analytical dynamics with constraint forces that do work in virtual displacements. Appl. Math. Comput. 121, 211–217 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Udwadia, F.E., Kalaba, R.E.: Nonideal constraints and lagrangian dynamics. J. Aerosp. Eng. 13(1), 17–22 (2000)

    Article  Google Scholar 

  25. Chen, Y.H.: On the deterministic performance of uncertain dynamical systems. Int. J. Control 43(5), 1557–1579 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Koivo, A.J., Thoma, M., Kocaoglan, E., Andradecetto, J.: Modeling and control of excavator dynamics during digging operation. J. Aerosp. Eng. 9(1), 10–18 (1996)

    Article  Google Scholar 

  27. Jin, X., Qin, J., Shi, Y., et al.: Auxiliary fault tolerant control with actuator amplitude saturation and limited rate. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–10 (2017)

    Google Scholar 

Download references

Acknowledgements

Ruiying Zhao is supported by the National Natural Science Foundation of China (Grant No. 51605038) and Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JQ5034). Shengjie Jiao is supported by the National Science and Technology Pillar Program (No. 2015BAF07B08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiying Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Chen, YH., Jiao, S. et al. A constraint-following control for uncertain mechanical systems: given force coupled with constraint force. Nonlinear Dyn 93, 1201–1217 (2018). https://doi.org/10.1007/s11071-018-4253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4253-7

Keywords

Navigation