Skip to main content
Log in

A second-order output spectrum approach for fault detection of bolt loosening in a satellite-like structure with a sensor chain

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel nonlinear second-order output spectrum (SOOS) approach for feature characterization and fault detection and location of bolt loosening in a satellite-like structure is proposed in this study using a simple sensor chain. The new method is developed based on a recently developed nonlinear decomposition method using the data measured from a chain of sensors for feature abstraction, together with the properties of transfer ratios of the SOOS of a multi-degree-of-freedom system with nonlinear components developed in this study. The new method is compared with other related vibration-based methods and validated with real experimental results. It is shown that the nonlinear SOOS of the satellite-like structure subject to a harmonic vibration excitation can be calculated efficiently, and it can be effectively and conveniently used as the fault indicator for detection and location of the bolt loosening problem of different severity in this complex structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Oregui, M., Li, S., Núñez, A., Li, Z., Carroll, R., Dollevoet, R.: Monitoring bolt tightness of rail joints using axle box acceleration measurements. Struct. Control Health Monit. (2016). doi:10.1002/stc.1848

    Google Scholar 

  2. Haroon, M., Adams, D.E.: Time and frequency domain nonlinear system characterization for mechanical fault identification. Nonlinear Dyn. 50, 387–408 (2007)

    Article  MATH  Google Scholar 

  3. Qiu, L., Yuan, S.F., Chang, F.K., Bao, Q., Mei, H.F.: On-line updating Gaussian mixture model for aircraft wing spar damage evaluation under time-varying boundary condition. Smart Mater. Struct. 23(12), 14 (2014)

    Article  Google Scholar 

  4. Gonsalez, C.G., da Silva, S., Brennan, M.J., Junior, V.L.: Structural damage detection in an aeronautical panel using analysis of variance. Mech. Syst. Signal Process. 52–53, 206–216 (2016)

    Google Scholar 

  5. Carden, E.P., Fanning, P.: Vibration based condition monitoring: a review. J. Struct. Health Monit. 3(4), 355–377 (2004)

    Article  Google Scholar 

  6. Wang, T., Song, G.B., Liu, S.P., Li, Y.R., Xiao, H.: Review of bolted connection monitoring. Int. J. Distrib. Sens. Netw. 2013, article id 871213, 8 (2013)

  7. Hattori, T., Yamashita, M., Mizuno, H., Naruse, T.: Loosening and sliding behavior of bolt-nut fastener under transverse loading. ICEM (2010). doi:10.1051/epjconf/20100608002

    Google Scholar 

  8. Nishimura, N., Murase, K., Hattori, T., Watanabe, T.: Loosening evaluation of bolt–nut fastener under transverse cyclic loading. Eng. Trans. 61(2), 151–160 (2013)

    Google Scholar 

  9. Jalalpour, M., Kim, J.J., Reda Taha, M.M.: Monitoring of L-shape bolted joint tightness using thermal contact resistance. Exp. Mech. (2013). doi:10.1007/s11340-013-9759-9

  10. Gotoh, Y., Teshima, Y., Takahashi, N.: Electromagnetic inspection method of slack of high tension bolt. IEEE Trans. Magn. 47(10), 2566–2569 (2011)

    Article  Google Scholar 

  11. Sun, W., Zhang, Y.: Numerical simulation of bolt looseness monitoring based on impedance method. Appl. Mech. Mater. 351–352(2), 1264–1268 (2013)

    Article  Google Scholar 

  12. Wang, W., Yan, W., Wang, J.: Damage identification in a steel frame using high-frequency electro-mechanical impedance signatures. In: Proceedings of the IEEE SPAWDA, Shanghai, pp. 411–414 (2012)

  13. Yang, J.N., Xia, Y., Loh, C.H.: Damage identification of bolt connections in a steel frame. J. Struct. Eng. 140(3), 04013064-1–04013064-9 (2014)

    Article  Google Scholar 

  14. Caccese, V., Mewer, R., Vel, S.S.: Detection of bolt load loss in hybrid composite/metal bolted connections. Eng. Struct. 26(7), 895–906 (2004)

    Article  Google Scholar 

  15. Maio, D.D., Schwingshackl, C., Sever, I.A.: Development of a test planning methodology for performing experimental model validation of bolted flanges. Nonlinear Dyn. 83, 983–1002 (2016)

    Article  Google Scholar 

  16. Jaumouille, V., Sinoua, J.J., Petitjean, B.: An adaptive harmonic balance method for predicting the nonlinear dynamic responses of mechanical systems - application to bolted structures. J. Sound Vib. 329(19), 4048–4067 (2012)

    Article  Google Scholar 

  17. Schwingshackl, C.W., Petrov, E.P.: Modeling of flange joints for the nonlinear dynamic analysis of gas turbine engine casings. J. Eng. Gas Turbine Power 134(12), article id 112504, 9 (2012)

  18. Dong, G.M., Chen, J., Zhang, N.: Experimental study on monitoring the attachment bolt loosening in a clamping support structure model. In: WCEAM, Queensland, pp. 964–970 (2006)

  19. Fasel, T.R., Kennel, M.B., Todd, M.D., Clayton, E.H., Stabb, M.C., Park, G.: Bolted joint damage assessment using chaotic probes. In: SPIE Smart Structures NDE, San Diego (2009)

  20. Tan, D.M., Qu, W.L., Tu, J.W., Qin, W.K.: Identification of loosen bolt of transmission tower based on wavelet packet analysis and neural net. In: Proceedings of the IEEE ICETCE, Lushan, pp. 6646–6649 (2011)

  21. Meyer, J.J., Adams, D.E.: Theoretical and experimental evidence for using impact modulation to assess bolted joints. Nonlinear Dyn. 81, 103–117 (2015)

    Article  MathSciNet  Google Scholar 

  22. Tashakori, S., baghalian, A., Unal, M., Fekrmandi, H., Senyurek, V.Y., Mcdniel, D., Tansel, I.N.: Contact and non-contact approaches in load monitoring applications using surface response to excitation method. Measurement 89, 197–203 (2016)

    Article  Google Scholar 

  23. Amerini, F., Barbieri, E., Meo, M., Polimeno, U.: Detecting loosening/tightening of clamped structures using nonlinear vibration techniques. Smart Mater. Struct. 19(8), article id 085013, 9 (2010)

  24. Mita, A., Fujimoto, A.: Active detection of loosened bolts using ultrasonic waves and support vector machines. In: IWSHM’05, pp. 1017–1024 (2005)

  25. Lang, Z.Q., Zhao, L.: Detection and location of nonlinearities in MDOF structural systems. Acta Montan. Slov. 15(1), 28–32 (2010)

    Google Scholar 

  26. Zhao, X.Y., Lang, Z.Q., Park, G., Farrar, C.R., Todd, M.D., Mao, Z., Worden, K.: a new transmissibility analysis method for detection and location of damage via nonlinear features in mdof structural systems. IEEE/ASME Trans. Mech. 20(4), 1933–1947 (2015)

    Article  Google Scholar 

  27. Jing, X.J.: A frequency-domain approach to crack-related fault detection. In: Proceedings of the IEEE CGNCC. pp. 283–288. Yantai (2014)

  28. Jing, X.J., Li, Q.K.: A nonlinear decomposition and regulation method for nonlinearity characterization. Nonlinear Dyn. 83, 1355–1377 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jing, X.J., Lang, Z.Q., Billings, S.A.: Mapping from parametric characteristics to generalized frequency response functions of nonlinear systems. Int. J. Control 81(7), 1071–1088 (2008)

    Article  MATH  Google Scholar 

  30. Jing, X.J., Lang, Z.Q.: Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input. Nonlinear Dyn. 58, 469–485 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ahn, K.K., Anh, H.P.H.: Inverse double NARX fuzzy modeling for system identification. IEEE/ASME Trans. Mechatron. 15(1), 136–148 (2010)

    Article  Google Scholar 

  32. Jing, X.J.: Nonlinear characteristic output spectrum for nonlinear analysis and design. IEEE/ASME Trans. Mech. 19(1), 171–183 (2014)

    Article  MathSciNet  Google Scholar 

  33. Jing, X.J., Lang, Z.Q.: Frequency Domain Analysis and Design of Nonlinear Systems Based on Volterra Series Expansion: A Parametric Characteristic Approach. Springer, Switzerland (2015)

    Book  MATH  Google Scholar 

  34. Jing, X.J.: Truncation order and its effect in a class of nonlinear systems. Automatica 38(11), 2978–2985 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rugh, W.J.: Nonlinear System Theory: The Volterra/Wiener Approach, pp. 1–42. The Johns Hopkins Univ. Press, Baltimore (1981)

    MATH  Google Scholar 

  36. George, D. A.: Continuous nonlinear systems. Technical Report, 355. MIT Research Lab of Electronics, Cambridge (1959)

  37. Wang, H., Jing, X.J.: A sensor network based virtual beam-like structure method for fault diagnosis and monitoring of complex structures with improved bacterial optimization. Mech. Syst. Signal Process. 84, 15–38 (2017)

    Article  Google Scholar 

  38. Torrence, C., Compo, G.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79(1), 61–78 (1998)

    Article  Google Scholar 

  39. Kwuimy, C.A.K., Samadani, M., Nataraj, C.: Bifurcation analysis of a nonlinear pendulum using recurrence and statistical methods: applications to fault diagnostics. Nonlinear Dyn. 76(4), 1963–1975 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from a GRF Project of HK RGC (No. 15206514), a NSFC project (No. 61374041) of China and a Grant from the Innovation and Technology Commission of the HKSAR Government to the Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjian Jing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Jing, X. A second-order output spectrum approach for fault detection of bolt loosening in a satellite-like structure with a sensor chain. Nonlinear Dyn 89, 587–606 (2017). https://doi.org/10.1007/s11071-017-3473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3473-6

Keywords

Navigation