Skip to main content
Log in

Parametric Identification of a Base-Excited Single Pendulum

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A harmonic balance based identification algorithm was applied to the simulated single pendulum with horizontal base-excitation. The purpose of this simulation was to examine the applicability of the algorithm on parametrically excited, whirling chaotic systems. Modifications were adopted to adapt to the whirling systems. The system was supposed to be unknown except only the excitation frequency. Linear interpolation functions and the Fourier series functions were tested to approximate unknown nonlinear functions in the governing differential equation. After extracting unstable periodic orbits, all of the parameters were simultaneously identified. By direct comparison, Poincaré section plots and reconstructed phase portrait techniques, it was shown that the identified system had similar dynamical characteristics to the original simulated pendulum, which implies the effectiveness of the examined algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van de Water, W. and Hoppenbrouwers, M., ‘Unstable periodic orbits in the parametrically excited pendulum’, Physical Review A 44(10), 1991, 6388–6397.

    Google Scholar 

  2. Jeong, J. and Kim, S.-Y., ‘Bifurcations in a horizontally driven pendulum’, Journal of Korean Physical Society 35(5), 1999, 393–398.

    Google Scholar 

  3. Bishop, S. R. and Clifford, M. J., ‘Zones of chaotic behavior in the parameterically excited pendulum’, Journal of Sound and Vibration 189, 1996, 142–147.

    Article  MathSciNet  ADS  Google Scholar 

  4. Dooren, R. V., ‘Chaos in a pendulum with forced horizontal support motion: A tutorial’, Chaos, Solutions & Fractals 7(1), 1996, 77–90.

    Article  Google Scholar 

  5. Raybov, V. B. ‘Using Lyapunov exponents to predict the onset of chaos in nonlinear oscillators’, Physical Review E 66(1), No. 016214, Part 2, 2002.

  6. Szemplinska-Stupnicka, W. and Tyrkiel, E., ‘The oscillation-rotation attractors in the forced pendulum and their peculiar properties’, International Journal of Bifurcation and Chaos 12(1), 2002, 159–168.

    Article  MATH  MathSciNet  Google Scholar 

  7. Clerc, M., Coullet, P., and Tirapegui, E., ‘The stationary instability in quasi-reversible systems and the Lorenz pendulum’, International Journal of Bifurcation and Chaos 11(3), 2001, 591–603.

    Article  MATH  MathSciNet  Google Scholar 

  8. Mohammad, K. S. et al., ‘Direct parameter estimation for linear and non-linear structures’, Journal of Sound and Vibration 153(3), 1992, 471–499.

    Article  MathSciNet  ADS  Google Scholar 

  9. Chen, Q. and Tomlinson, G. R., ‘Parametric identification of systems with dry friction and nonlinear stiffness a time series model’, Journal of Vibration and Acoustics 118(2), 1996, 252–263.

    Google Scholar 

  10. Plakhtienko, N. P., ‘Methods of identification of nonlinear mechanical vibrating systems’, International Applied Mechanics 36(12), 2000, 1565–1594.

    Article  MATH  Google Scholar 

  11. Plakhtienko, N. P., ‘A method of special weight-functions in the problem of parametric identification of mechanical systems’, DOPOV AKAD NAUK A 8, 1983, 31–35.

    Google Scholar 

  12. Kapania, R. K. and Park, S., ‘Parametric identification of nonlinear structural dynamic systems using time finite element method’, AIAA Journal 35(4), 1997, 719–726

    Article  MATH  Google Scholar 

  13. Verbeek, G., Dekraker, A., and Vancampen, D. H., ‘Nonlinear parametric identification using periodic equilibrium states - application to an aircraft landing gear damper’, Nonlinear Dynamics 7(4), 1995, 499–515.

    Article  Google Scholar 

  14. Hajj, M. R., Fung, J., Nayfeh, A. H. et al., ‘Parametric Identification of Nonlinear Dynamic Systems’, Computers & Structures 20(3), 1985, 487–493.

    Article  Google Scholar 

  15. Yasuda, K., Kawamura, S., and Watanabe, K., ‘Identification of nonlinear multi-degree-of-freedom systems (presentation of a technique)’, JSME International Journal, Series III 31, 1988, 8–14.

    MathSciNet  Google Scholar 

  16. Yasuda, K. and Kawamura, S., 1989, ‘A nonparametric identification technique for nonlinear vibratory systems (proposition of a technique)’, JSME International Journal, Series III 31, 1989, 365–372.

    Google Scholar 

  17. Yasuda, K. and Kamiya, K., ‘Identification of a nonlinear beam (proposition of an identification technique)’, JSME International Journal, Series III 33, 1990, 535–540.

    Google Scholar 

  18. Yasuda, K. and Kamiya, K., ‘Experimental identification technique of nonlinear beams in time domain’, Nonlinear Dynamics 18, 1997, 185–202.

    Article  MathSciNet  Google Scholar 

  19. Kerschen, G., Lenaerts, V., and Golinval, J. C., ‘Identification of a continuous structure with a geometrical non-linearity. Part I: Conditioned reverse path method’, Journal of Sound and Vibration 262(4), 2003, 889–906.

    Article  ADS  Google Scholar 

  20. Richard, C. M. and Singh, R., ‘Identification of multi-degree-of-freedom non-linear systems under random excitations by the reverse-path spectral method’, Journal of Sound and Vibration 213(4), 1998, 673–708.

    Article  Google Scholar 

  21. Feldman, M., ‘Non-linear system vibration analysis using Hilbert transform–I. free vibration analysis method “FREEVIB”’, Mechanical Systems and Signal Processing 8(2), 1994, 119–127.

    Article  ADS  Google Scholar 

  22. Lenaerts, V., Kerschen, G., and Golinval, J.-C., ‘Identification of a continuous structure with a geometrical non-linearity. Part II: Proper orthogonal decomposition’, Journal of Sound and Vibration 262(4), 2003, 907–919.

    Article  ADS  Google Scholar 

  23. Kerschen, G., Feeny, B. F., and Golinval, J. C., 2003, ‘On the exploitation of chaos to build reduced-order models’, Computer Methods in Applied Mechanics and Engineering 192(13/14), 2003, 1785–1795.

    Google Scholar 

  24. Feldman, M., 1997, ‘Non-linear free vibration identification via the Hilbert transform’, Journal of Sound and Vibration 208(3), 1997, 475–489.

    Google Scholar 

  25. Ghanem, R. and Romeo, F., 2001, ‘A wavelet-based approach for model and parameter identification of nonlinear systems’, International Journal of Non-Linear Mechanics 36, 2001, 835–859.

    Google Scholar 

  26. Yuan, C. M. and Feeny, B. F., ‘Parametric identification of chaotic systems’, Journal of Vibration and Control 4(4), 1998, 405–426.

    Google Scholar 

  27. Feeny, B. F., Yuan, C. M., and Cusumano, J. P., ‘Parametric identification of an experimental magneto-elastic oscillator’, Journal of Sound and Vibration 247(5), 2001, 785–806.

    Article  ADS  Google Scholar 

  28. Abarbanel, H. D. I., Brown, R., SIDorowich, J. J., and Tsimring, L. S., ‘The analysis of observed chaotic data in physical systems’, Reviews of Modern Physics 65, 1993, 1331–1392.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Y., Feeny, B.F. Parametric Identification of a Base-Excited Single Pendulum. Nonlinear Dyn 46, 17–29 (2006). https://doi.org/10.1007/s11071-005-9001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-005-9001-0

Keywords

Navigation