Skip to main content

Advertisement

Log in

Antioxidative and Anti-Apoptotic Roles of Silibinin in Reversing Learning and Memory Deficits in APP/PS1 Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Silibinin has been widely used to treat liver diseases due to its antioxidant activity. However, the effects of silibinin on the central nervous system have not been thoroughly investigated. The pathological hallmarks of Alzheimer’s disease are the accumulation of amyloid β protein, development of neurofibrillary tangles and increased oxidative stress, which ultimately lead to irreversible neuronal loss and cognitive impairment. Our findings show that silibinin ameliorated memory impairments in APP/PS1 mice in the Morris water maze via suppression of oxidative stress and inhibition of apoptosis. Treatment with silibinin reduced malondialdehyde content level and increased glutathione and superoxide dismutase activity in APP/PS1 mice. A terminal deoxynucleotidyl transferase dUTP nick end labeling assay revealed an anti-apoptotic effect of silibinin. Silibinin suppressed the activation of caspase-3 by inhibiting Jun N-terminal kinase phosphorylation and the downstream hippocampal Bax/Bcl-2 ratio. Silibinin treatment significantly increased levels of synaptophysin and PSD95 in APP/PS1 transgenic mice. These results suggest that silibinin could be a potential therapeutic agent for the treatment of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pratico D, Sung S (2004) Lipid peroxidation and oxidative imbalance: Early functional events in Alzheimer’s disease. J Alzheimers Dis 6:171–175

    Article  CAS  PubMed  Google Scholar 

  2. Pourkhodadad S, Alirezaei M, Moghaddasi M, Ahmadvand H, Karami M, Delfan B, Khanipour Z (2016) Neuroprotective effects of oleuropein against cognitive dysfunction induced by colchicine in hippocampal CA1 area in rats. J Physiol Sci 66:397–405

    Article  CAS  PubMed  Google Scholar 

  3. Pratico D (2008) Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 29:609–615

    Article  CAS  PubMed  Google Scholar 

  4. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, Sanders S, Zehr C, O’Campo K, Hardy J, Prada CM, Eckman C, Younkin S, Hsiao K, Duff K (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4:97–100

    Article  CAS  PubMed  Google Scholar 

  5. Butterfield DA, Boyd-Kimball D (2005) The critical role of methionine 35 in Alzheimer’s amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity. Biochim Biophys Acta 1703:149–156

    Article  CAS  PubMed  Google Scholar 

  6. Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s disease. Neurosci Bull 30:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863:2977–2992

    Article  CAS  PubMed  Google Scholar 

  8. Ferreiro E, Oliveira CR, Pereira CM (2008) The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol Dis 30:331–342

    Article  CAS  PubMed  Google Scholar 

  9. Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R, Davis RJ, Shirasaki Y, Greenberg ME (2001) Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci 21:7551–7560

    CAS  PubMed  Google Scholar 

  10. Yao M, Nguyen TV, Pike CJ (2005) Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci 25:1149–1158

    Article  CAS  PubMed  Google Scholar 

  11. Morazzoni P, Bombardelli E (1995) Silybum marianum (Carduus marianum). Fitoterapia 66:3–42

    CAS  Google Scholar 

  12. Souza CO, Peracoli MT, Weel IC, Bannwart CF, Romao M, Nakaira-Takahagi E, Medeiros LT, Silva MG, Peracoli JC (2012) Hepatoprotective and anti-inflammatory effects of silibinin on experimental preeclampsia induced by L-NAME in rats. Life Sci 91:159–165

    Article  PubMed  Google Scholar 

  13. Geed M, Garabadu D, Ahmad A, Krishnamurthy S (2014) Silibinin pretreatment attenuates biochemical and behavioral changes induced by intrastriatal MPP+ injection in rats. Pharmacol Biochem Behav 117:92–103

    Article  CAS  PubMed  Google Scholar 

  14. Joshi R, Garabadu D, Teja GR, Krishnamurthy S (2014) Silibinin ameliorates LPS-induced memory deficits in experimental animals. Neurobiol Learn Mem 116:117–131

    Article  CAS  PubMed  Google Scholar 

  15. Tota S, Kamat PK, Shukla R, Nath C (2011) Improvement of brain energy metabolism and cholinergic functions contributes to the beneficial effects of silibinin against streptozotocin induced memory impairment. Behav Brain Res 221:207–215

    Article  CAS  PubMed  Google Scholar 

  16. Lu P, Mamiya T, Lu LL, Mouri A, Niwa M, Hiramatsu M, Zou LB, Nagai T, Ikejima T, Nabeshima T (2009) Silibinin attenuates amyloid beta(25–35) peptide-induced memory impairments: implication of inducible nitric-oxide synthase and tumor necrosis factor-alpha in mice. J Pharmacol Exp Ther 331:319–326

    Article  CAS  PubMed  Google Scholar 

  17. Jankowsky JL, Slunt HH, Gonzales V, Jenkins NA, Copeland NG, Borchelt DR (2004) APP processing and amyloid deposition in mice haplo-insufficient for presenilin 1. Neurobiol Aging 25:885–892

    Article  CAS  PubMed  Google Scholar 

  18. Xu Q, Ji XF, Chi TY, Liu P, Jin G, Gu SL, Zou LB (2015) Sigma 1 receptor activation regulates brain-derived neurotrophic factor through NR2A-CaMKIV-TORC1 pathway to rescue the impairment of learning and memory induced by brain ischaemia/reperfusion. Psychopharmacology 232:1779–1791

    Article  CAS  PubMed  Google Scholar 

  19. Butterfield DA, Reed T, Newman SF, Sultana R (2007) Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radic Biol Med 43:658–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sultana R, Perluigi M, Allan Butterfield D (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169

    Article  CAS  PubMed  Google Scholar 

  21. Lovell MA, Ehmann WD, Butler SM, Markesbery WR (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 45:1594–1601

    Article  CAS  PubMed  Google Scholar 

  22. Venkateshappa C, Harish G, Mahadevan A, Srinivas Bharath MM, Shankar SK (2012) Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: implications for neurodegeneration in Alzheimer’s disease. Neurochem Res 37:1601–1614

    Article  CAS  PubMed  Google Scholar 

  23. Hamilton A, Holscher C (2012) The effect of ageing on neurogenesis and oxidative stress in the APP (swe)/PS1 (deltaE9) mouse model of Alzheimer’s disease. Brain Res 1449:83–93

    Article  CAS  PubMed  Google Scholar 

  24. Song X, Zhou B, Cui L, Lei D, Zhang P, Yao G, Xia M, Hayashi T, Hattori S, Ushiki-Kaku Y, Tashiro SI, Onodera S, Ikejima T (2016) Silibinin ameliorates Abeta25-35-induced memory deficits in rats by modulating autophagy and attenuating neuroinflammation as well as oxidative stress. Neurochem Res 42:1073–1083

    Article  CAS  PubMed  Google Scholar 

  25. Smith WW, Gorospe M, Kusiak JW (2006) Signaling mechanisms underlying Abeta toxicity: potential therapeutic targets for Alzheimer’s disease. CNS Neurol Disord Drug Targets 5:355–361

    Article  CAS  PubMed  Google Scholar 

  26. Oleinik NV, Krupenko NI, Krupenko SA (2007) Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. Oncogene 26:7222–7230

    Article  CAS  PubMed  Google Scholar 

  27. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fuchs SY, Adler V, Pincus MR, Ronai Z (1998) MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci USA 95:10541–10546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10:1054–1072

    Article  CAS  PubMed  Google Scholar 

  30. Wang M, Li YJ, Ding Y, Zhang HN, Sun T, Zhang K, Yang L, Guo YY, Liu SB, Zhao MG, Wu YM (2016) Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury. Mol Neurobiol 53:932–943

    Article  CAS  PubMed  Google Scholar 

  31. Xie Z, Ding SQ, Shen YF (2014) Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation. Biochem Biophys Res Commun 454:313–319

    Article  CAS  PubMed  Google Scholar 

  32. Lee Y, Chun HJ, Lee KM, Jung YS, Lee J (2015) Silibinin suppresses astroglial activation in a mouse model of acute Parkinson’s disease by modulating the ERK and JNK signaling pathways. Brain Res 1627:233–242

    Article  CAS  PubMed  Google Scholar 

  33. Jin G, Bai D, Yin S, Yang Z, Zou D, Zhang Z, Li X, Sun Y, Zhu Q (2016) Silibinin rescues learning and memory deficits by attenuating microglia activation and preventing neuroinflammatory reactions in SAMP8 mice. Neurosci Lett 629:256–261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Subject of Liaoning natural science fund (20170540880), Liaoning education department project (L2014409), Shenyang science and Technology Bureau subject of China (F13-220-9-27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, D., Jin, G., Yin, S. et al. Antioxidative and Anti-Apoptotic Roles of Silibinin in Reversing Learning and Memory Deficits in APP/PS1 Mice. Neurochem Res 42, 3439–3445 (2017). https://doi.org/10.1007/s11064-017-2389-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2389-3

Keywords

Navigation