Skip to main content

Advertisement

Log in

Mechanisms Responsible for the High Sensitivity of Neural Cells to Vitamin B1 Deficiency

  • REVIEWS
  • Published:
Neurophysiology Aims and scope

The available information on the mechanisms of involvement of vitamin B1 (thiamine) in vital processes in neural cells is analyzed. It is concluded that, together with the coenzymatic functions performed by this vitamin, the latter realizes “noncoenzymatic” functions. These functions play significant roles in cellular processes in various cells, and this is an indisputable fact. Some features of the structural/functional organization of neurons are responsible for the importance of thiamine-dependent processes for the maintenance of the functional activity of these cells. The accumulated data on the release of thiamine from neurons in the course of their excitation, as well as on the high dynamics of B1 metabolism in nerve cells related to rapid changes between states of excitation and inhibition, allow researchers to formulate an idea on the existence of a rapidly exchanged pool of thiamine ant its biologically active derivatives (“mobile thiamine pool”) in such cells. It is hypothesized that circulation of this pool between the main part of the intracellular space and presynaptic compartments of the synaptic structures is associated with changes in the membrane potential of nerve cells and modifications of cellular metabolism. This is confirmed by the data on coupling of the regulation of the mitochondrial multienzyme pyruvate dehydrogenase complex with the functioning of the excitable membranes. It is suggested that the interaction of thiamine with cytoskeletal proteins plays an important role in vitally important nonenzymatic processes realized by this vitamin in neural cells. The possible role of thiamine deficiency in the development of neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and Wernicke’s encephalopathy, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Lonsdale, “A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives,” Evid. Based Complement. Altern. Med., 3, No. 1, 49-59 (2006).

    Article  Google Scholar 

  2. S. Manzetti, J. Zhang, and van der D. Spoel, “Thiamine function, metabolism, uptake, and transport,” Biochemistry, 53, No. 5, 821-835 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. R. F. Butterworth, J. J. Kril, and C. G. Harper,“Thiamine-dependent enzyme changes in the brains of alcoholics: relationship to the Wernicke-Korsakoff syndrome,” Alcohol Clin. Exp. Res., 17, No. 5, 1084-1088 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. K. V. Lu’o’ng and L. T. Nguyên, “Role of thiamine in Alzheimer’s disease,” Am. J. Alzheimers Dis. Other Demen., 26, No. 8, 588-598 (2011).

    Article  PubMed  Google Scholar 

  5. J. P. Blass, P. Gleason, D. Brush, et al., Thiamine and Alzheimer’s disease. A pilot study,” Arch. Neurol., 45, No. 8, 833-835 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. X. Pan, G. Fei, J. Lu, et al., “Measurement of blood thiamine metabolites for Alzheimer’s disease diagnosis,” EBioMedicine, 26, No. 3, 155-162 (2015).

  7. K. V. Luong and L. T. Nguyên, “Thiamine and Parkinson’s disease,” J. Neurol. Sci., 316, Nos. 1/2, 1-8 (2012).

  8. K. V. Luong and L. T. Nguyên, “The beneficial role of thiamine in Parkinson disease,” CNS Neurosci. Ther., 19, No. 7, 461-468 (2011).

    Article  CAS  Google Scholar 

  9. A. Plaitakis, W. O. Whetsell, and M. D. Yahr, “Subacute necrotizing encephalomyelopathy (Leigh’s disease): clinical and genetic considerations of its adult form,” Trans. Am. Neurol. Ass., 102, No. 1, 32-35 (1977).

    CAS  Google Scholar 

  10. J. R. Cooper and J. H. Pincus, “Roles of thiamine triphosphate in subacute necrotizing encephalomyelopathy,” J. Agric. Food Chem., 20, No. 3, 490-493 (1972).

    Article  CAS  PubMed  Google Scholar 

  11. Yu. M. Ostrovsky, “On the mechanism of coenzymic and noncoenzymic action of thiamine,” J. Vitaminol., 14, Suppl., 98-102 (1968).

  12. R. H. Haas, Thiamine and the brain,” Annu. Rev. Nutr., 8, 483-515 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Yu. M. Parkhomenko, G. V. Donchenko, and Z. S. Protasova, “Neuroactivity of thiamine: Facts and hypotheses,” Ukr. Biokhim. Zh., 68, No. 2, 3-14 (1996).

    CAS  PubMed  Google Scholar 

  14. L. Bettendorff, “A non-cofactor role of thiamine derivatives in excitable cells?” Arch. Physiol. Biochem., 104, No. 6, 745-751 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Y. Itokawa, “Thiamine and nervous system function: an historical sketch,” Metab. Brain Dis., 11, No. 1, 1-7 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. A. Bâ, “Metabolic and structural role of thiamine in nervous tissues,” Cell. Mol. Neurobiol., 28, No. 7, 923-931 (2008).

    Article  PubMed  CAS  Google Scholar 

  17. I. Bubko, B. M. Gruber, and E. L. Anuszewska, “The role of thiamine in neurodegenerative diseases,” Postepy Hig. Med. Dosw. (Online) [in Polish], 21, No. 69, 1096-1106 (2015).

  18. L. Binet and B. Minz, “Sur les reactions biochimiques des nerf au repos et au cours d’une exitation electrique,” Arch. Int. Physiol., 42, 281-300 (1936).

    CAS  Google Scholar 

  19. B. Minz, “Sur la liberation de la vitamin B1 par le trone isole de nerf pneumogastrique soumis a l’exitation electrique,” Comp. Rend. Soc. Biol., 127, No. 6, 1251-1253 (1938).

    CAS  Google Scholar 

  20. H. A. Kunz, “Effect of aneurin antimetabolites on a single labeled nerve fiber,” Helv. Physiol. Pharmacol. Acta, 1, No. 14, 411-423 (1956).

    Google Scholar 

  21. S. F. Petropulos, “The action of an antimetabolite of thiamine on single myelinated nerve fibers,” J. Cell Comp. Physiol., 56, No. 1, 7-13 (1960).

    Article  CAS  PubMed  Google Scholar 

  22. M. Sasa, I. Takemoto, and K. Nishino, “The role of thiamine on excitable membrane of crayfish giant axon,” J. Nutr. Sci. Vitaminol., 22, Suppl., 21-24 (1976).

  23. A. V. Romanenko, “Effects of thiamine on neuromuscular transmission in the frog,” Neirofiziologiya, 17, No. 6, 794-800 (1985).

  24. T. Matsuda, H. Iwata, and J. R. Cooper, “Involvement of sulfhydryl groups in the inhibition of brain (Na+,K+)-ATPase by pyrithiamin,” Biochim. Biophys. Acta, 817, No. 1, 17-24 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. J. M. Duclos and P. Haake, “Ring opening of thiamine analogs. The role of ring opening in physiological function,” Biochemistry, 13, No. 26, 5358-5362 (1974).

    Article  CAS  PubMed  Google Scholar 

  26. F. A. Oliveira, D. T. Galan, A. M. Ribeiro, et al., “Thiamine deficiency during pregnancy leads to cerebellar neuronal death in rat offspring: role of voltage-dependent K+ channels,” Brain Res., 1134, No. 1, 79-86 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. L. Bettendorff, H. A. Kolb, and E. Schoffeniels, “Thiamine triphosphate activates an anion channel of large unit conductance in neuroblastoma cells” J. Membr. Biol., 136, No. 3, 281-288 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. R. S. Gupta, “Microtubules, mitochondria and molecular chaperons: a new hypothesis for in vivo assembly of microtubules,” Biochem. Cell Biol., 68, No. 12, 1352-1363 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. K. Berman and R. A. Fishman, “Thiamine phosphate metabolism and possible coenzyme independent functions of thiamine in brain,” J. Neurochem., 24, No. 3, 457-465 (1975).

    Article  CAS  PubMed  Google Scholar 

  30. E. Shoffeniels and D. C. Marginetu, “Thiamine triphosphate as specific operating substance in axonal conduction,” in: The Molecular Bases of Nerve Active Processes, Walter de Gruyter & Co., Berlin, New York (1984-1985), pp. 401-415.

  31. R. V. Čhagovec and A. A. Rybina, “Investigations on the forms and metabolism of thiamine in tissues of the animal organism by means of thiamine S35,” International Symposium B Vitamins, Poznan (1959), pp. 324-338.

    Google Scholar 

  32. Yu. M. Parkhomenko, A, A, Strokina, S. Yu. Pilipchuk, et al., “The presence of two separrate active centers on the thiamine-binding protein of the synaptosome plasma membranes,”Ukr. Biokhim. Zh., 82, No. 1, 34-41 (2010).

    CAS  Google Scholar 

  33. Ch. Tanaka, Y. Itokawa, and S. Tanaka, “The axoplasmic transport of thiamine in rat sciatic nerve,” J. Histochem. Cytochem., 21, No. 1, 81-85 (1973).

    Article  CAS  PubMed  Google Scholar 

  34. A. Aiuchi, M. Matsunaga, T. Daimatsu, et al., “Effect of glucose and pyruvate metabolism on membrane potential in synaptosomes,” Biochim. Biophys. Acta, 771, No. 20, 228-234 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. M. Browing, W. Benneff, P. Kelley, et al., “Evidence that the 40000 Mr phosphoprotein influenced by high frequency synaptic stimulation is the alpha subunit of pyruvate dehydrogenase,” Brain. Res., 218, No. 1, 255-266 (1981).

    Article  Google Scholar 

  36. Yu. M. Parkhomenko. I. Yu. Chernysh, T. Ya. Churilova, et al., “Effects of thiaminephosphates on the activity of regulatory enzymes of the pyruvate dehydrogenase complex,” Ukr. Biokhim. Zh., 59, No. 5, 49-54 (1987).

  37. J. R. Cooper, J. H. Pincus, Y. Itokawa, et al., “Enzyme inhibiting factor in subacute necrotizing enchephalomyelophathy,” Neurology, 19, No. 6, 841-845 (1969).

  38. H. O. Nghiêm, L. Bettendorff, and J. P. Changeux, “Specific phosphorylation of Torpedo 43K rapsyn by endogenous kinase(s) with thiamine triphosphate as the phosphate donor,” FASEB J., 14, No. 3, 543-554 (2000).

    PubMed  Google Scholar 

  39. L. Bettendorff, B. Lakaye, G. Kohn, et al., “Thiamine triphosphate: a ubiquitous molecule in search of a physiological role,” Metab. Brain Dis., 29, No. 4, 1069-1082 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. F. Hucho, D. D. Randall., T. E. Roche, et al., “Keto acid dehydrogenase complexes. XVII. Kinetic and regulatory properties of pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase from bovine kidney and heart,” Arch. Biochem. Biophys., 151, No. 1, 328-340 (1972).

  41. A. G. Vitreschak, D. A. Rodionov, and A. A. Mironov, “Riboswitches: the oldest mechanism for the regulation of gene expression?” Trends Gen., 20, No. 1, 44-50 (2004).

    Article  CAS  Google Scholar 

  42. Li Sanshu and R. Ronald, “Breaker Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing,” Nucleic Acids Res., 41, No. 5, 3022-3031 (2013).

  43. F. Pavlik, A. Bischoff, and I. Bitsch, “Peripheral nerve changes in thiamine deficiency and starvation,” Acta Neuropathol., 39, 211-218 (1977).

    Article  Google Scholar 

  44. S. S. Jhala and A. S. Hazell, “Modeling neurodegenerative disease pathophysiology in thiamine deficiency: consequences of impaired oxidative metabolism,” Neurochem. Int., 58, No. 3, 248-260 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Yu. M. Parkhomenko, I. Yu. Chernysh, Z. C. Protasova, et al., “Interrelations between the thiamine content, activity of thiamine diphosphate-dependent enzymes, and level of reduced glutathione in the rat liver,” Ukr. Biokhim. Zh., 62, No. 6, 52-58 (1990).

    CAS  PubMed  Google Scholar 

  46. G. E. Gibson and H. Zhang, “Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration,” Neurochem. Int., 40, No. 6, 493-504 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Yu. M. Ostrovsky, Thiamine, Minsk, Belarus (1971).

    Google Scholar 

  48. Yu. M. Ostrovsky, S, V, Zabrodskaya, and D. A. Oparin, “A noncoenzymatic mechanism of inhibition of pyruvate dehydrogenase by phosphorylated thiamine analogs,” Dokl. AN SSSR, 295, No. 5, 1247-1249 (1987).

  49. M. G. Velichko, R. V. Trebukhina, Yu. M. Ostrovsky, et al., “Effects of oxythiamine on metabolism of pyruvate and lactate in rat tissues,” Vopr. Med. Khim., 25, No. 2, 166-170 (1979).

    CAS  PubMed  Google Scholar 

  50. S. Chornyy, J. Parkhomenko and N. Chorna, “Thiamine deficiency caused by thiamine antagonists triggers upregulation of apoptosis inducing factor gene expression and leads to caspase 3-mediated apoptosis in neuronally differentiated rat PC-12 cells,” Acta Biochim. Pol., 54, No. 2, 315-322 (2007).

    CAS  PubMed  Google Scholar 

  51. L. C. Vedder, J. M. Hall, K. R. Jabrouin, et al., “Interactions between chronic ethanol consumption and thiamine deficiency on neural plasticity, spatial memory, and cognitive flexibility,” Alcohol Clin. Exp. Res., 39, No. 11, 2143-2153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. X. Wang, B. Wang, Z. Fanb, et al., “Thiamine deficiency induced endoplasmic reticulum stress in neurons,” Neuroscience, 144, No. 3, 1045-1056 (2007).

  53. A. Ba, “Comparative effects of alcohol and thiamine deficiency on the developing central nervous system,” Brain Res., 225, No. 1, 235-242 (2011).

    CAS  Google Scholar 

  54. L. Qin and F. T. Crews, “Focal thalamic degeneration from ethanol and thiamine deficiency is associated with neuroimmune gene induction, microglial activation, and lack of monocarboxylic acid transporters,” Alcoholism: Clin. Exp. Res., 38, No. 3, 657-671 (2014).

    Article  CAS  Google Scholar 

  55. M. L. Semenova, “Transgenic animals: What are they?,” Soros. Obrazovat. Zh., 7, No. 4, 13-20 (2001).

    Google Scholar 

  56. M. J. Lindhurst, G. Fiermonte, S. Song, et al., “Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia,” Proc. Natl. Acad. Sci. USA, 103, No. 43, 15927-15932 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. A. J. Cooper, K. F. Sheu, J. R. Burke, et al., “Pathogenesis of inclusion bodies in (CAG)n/Qn-expansion diseases with special reference to the role of tissue transglutaminase and to selective vulnerability,” J. Neurochem., 72, No. 3, 889-899 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. A. I. Voskoboyev and I. P. Chernikevich, Biosynthesis, Degradation, and Transport of Thiamine Phosphates, Nauka i Tekhnka, Minsk (1987).

    Google Scholar 

  59. Yu. Parkhomenko, A. Vovk, Z. Protasova, et al., “Thiamine derivatives used to investigate the modulator role of thiamine in the biosynthesis of acetylcholine from pyruvate,” in: The 8th Intern. Conf. Thiamine: From Catalysis to Pathology (Liege, May 23–26), Liege (2014), p. 30.

  60. A. V. Maltsev, N. V. Davidenko, V. K. Uteshev, et al., “Intensive protein synthesis in neurons and phosphorylation of precursor protein and beta-amyloid and tau protein factors are the triggers of amyloidosis and Alzheimer’s disease neurons,” Biochem., Suppl. Ser. B, Biomed. Chem., 59, No. 2, 144-170 (2013).

  61. F. Mouton-Liger, C. Paquet, J. Dumurgier, et al., “Increased cerebrospinal fluid levels of double-stranded RNA-dependent protein kinase in Alzheimer’s disease,” Biol. Psychiat., 71, No. 9, 829-835 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. A. Bose, F. Mouton-Liger, C. Paquet, et al., “Modulation of tau phosphorylation by the kinase PKR implication in Alzheimer’s disease,” Brain Pathol., 21, No. 2, 189-200 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. X. Wang, B. Fan, J. Luo, et al., “Activation of doublestranded RNA-activated protein kinase by mild impairment of oxidative metabolism in neurouns,” J. Neurochem., 103, No. 6, 2380-2390 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. F. Mouton-Liger, A. S. Rebillat, S. Gourmaud, et al., “PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model,” Cell Death Dis., 6, No. 1, 1-8 (2015).

    Article  CAS  Google Scholar 

  65. N. Y. Calingasan, S. E. Gandy, H. Baker, et al., “Novel neuritic clusters with accumulations of amyloid precursor protein and amyloid precursor-like protein 2 immunoreactivity in brain regions damages by thiamine deficiency,” Am. J. Pathol., 149, No. 3, 1063-1071 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. S. S. Karuppagounder, X. Hui, D. Pechman, et al., Translocation of Amyloid precursor protein C-terminal fragment (s) to the nucleus precedes neuronal death due to thiamine deficiency induced mild impairment of oxidative metabolism,” Neurochem. Res., 33, No. 7, 1365-1372 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. G. E. Gibson, J. A. Hirsch, R. T. Cirio1, et al., “Abnormal thiamine-dependent processes in Alzheimer’s disease. Lessons from diabetes,” Mol. Cell. Neurosci., 55, No. 1, 17-25 ( 2013).

  68. Q. Zhang, G. Yang, W. Li, et al., “Thiamine deficiency increases β-secretase activity and accumulation of β-amyloid peptides,” Neurobiol. Aging, 32, No. 1, 42-53 (2011).

    Article  PubMed  CAS  Google Scholar 

  69. J. Zhao, X. Sun, Z. Yu, et al., “Exposure to pyrithiamine increases β-amyloid accumulation, tau hyperphosphorylation, and glycogen synthase kinase-3 activity in the brain,” Neurotoxicol. Res., 19, No. 4, 575-583 (2011).

    Article  CAS  Google Scholar 

  70. A. Schallier, I. Smolders, D. Van Dam, et al., “Regionand age-specific changes in glutamate transport in the AβPP23 mouse model for Alzheimer’s disease,” J. Alzheimer’s Dis., 24, No. 2, 287-300 (2011).

    CAS  Google Scholar 

  71. M. Hoshi, A. Takashima, K. Noguchi, et al., “Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3 beta in brain,” Proc. Natl. Acad. Sci. USA, 93, No. 7, 2719-2723 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. A. Takashima, K. Noguchi, K. Sato, et al., “Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity,” Proc. Natl. Acad. Sci. USA, 90, No. 16, 7789-7793 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. M. Hoshi, M. Sato, S, Kondo, et al. “Different localization of tau protein kinase I/glycogen synthase kinase-3 beta from glycogen synthase kinase-3 alpha in cerebellum mitochondria,” J. Biochem., 118, No. 4, 683-685 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. J. E. Lawson, S. H. Park, A. R. Mattison, et al., “Cloning, expression, and properties of the regulatory subunit of bovine pyruvate dehydrogenase phosphatase,” J. Biol. Chem., 272, No. 50, 31625-31629 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. X. Pan, N. Gong, J. Zhao, et al., “Powerful beneficial effects of benfothiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice,” Brain, 133, No. 5, 1342-1351 (2010).

  76. K. Meador, D. Loring, M. Nichols, et al., “Preliminary findings of high-dose thiamine in dementia of Alzheimer’s type,” J. Geriat. Psychiat. Neurol., 6, No. 4, 222-229 (1993).

    Article  CAS  Google Scholar 

  77. F. J. Jiménez-Jiménez, J. A. Molina, A. Hernánz, et al., “Cerebrospinal fluid levels of thiamine in patients with Parkinson’s disease,” Neurosci. Lett., 271, No. 1, 33-36 (1999).

    Article  PubMed  Google Scholar 

  78. U. Laforenza, C. Patrini, M. Poloni, et al., “Thiamine mono- and pyrophosphatase activities from brain homogenate of Guamanian amyotrophic lateral sclerosis and parkinsonism-dementia patients,” J. Neurol. Sci., 109, No. 2, 156-161 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. M. Favier, C. Carcenac, G. Drui, et al., “High-frequency stimulation of the subthalamic nucleus modifies the expression of vesicular glutamate transporters in basal ganglia in a rat model of Parkinson’s disease,” BMC Neurosci., 14, No. 152, 1-13 (2013).

    Google Scholar 

  80. K. G. McLure, M. Nakagi, and M. B. Kastan, “NAD+ modulates p53 DNA binding specificity and function,” Mol. Cell Biol., 24, No. 22, 9958-9967 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. S. A. Chornyy, Effects of Thiamine Antagonists on Signaling Pathways of Apoptosis in Cultured Nerve Cells, Abstr. Thesis Cand. Biol., Kyiv (2010).

  82. T. Tanaka, D. Yamamoto, T. Sato, et al., “Adenosine thiamine triphosphate (AThTP) inhibits Poly(ADPRibose) polymerase-1 (PARP-1) activity,” J. Nutr. Sci. Vitaminol., 57, No. 2, 192-196 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Y. Bando, R. Onuki, T. Katayama, et al., “Double-strand RNA dependent protein kinase (PKR) is involved in the extrastriatal degeneration in Parkinson’s disease and Huntington’s disease,” Neurochem. Int., 46, No. 1, 11-18 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. A. Costantini, M. I. Pala, L. Compagnoni, and M. Colangeli, “High-dose thiamine as initial treatment for Parkinson’s disease,” BMJ Case Reports (2013); doi:10.1136/bcr-2013-009289.

    Google Scholar 

  85. A. Costantini and R. Fancellu, “An open-label pilot study with high-dose thiamine in Parkinson’s disease,” Neural Regen. Res., 11, No. 3, 406-407 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. A. Costantini, M. I. Pala, E. Grossi, et al., “Long-term treatment with high-dose thiamine in Parkinson disease: an open-label pilot study,” J. Altern. Complement Med., 21, No. 12, 740-747 (2015).

    Article  PubMed  Google Scholar 

  87. L. C. Heap, O. E. Pratt, R. J. Ward, et al., “Individual susceptibility to Wernicke-Korsakoff syndrome and alcoholism-induced cognitive deficit: impaired thiamine utilization found in alcoholics and alcohol abusers,” Psychiat. Genet., 12, No. 4, 217-224 (2002).

    Article  Google Scholar 

  88. Y. M. Parkhomenko, P. A. Kudryavtsev, S.Y. Pylypchuk, et al., “Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels,” J. Neurochem., 117, No. 6, 1055-1065 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. K. O. Bueno, L. de Souza Resende, A. F. Ribeiro, et al., “Spatial cognitive deficits in an animal model of Wernicke-Korsakoff syndrome are related to changes in thalamic VDAC protein concentrations,” Neuroscience, 294, No. 1, 29-37 (2015).

  90. D. W. Frijlink, J. J. Tilanus, and G. Roks, “Elevated cerebrospinal fluid tau in Wernicke encephalopathy,” BMJ Case Rep. (2012), doi: 10.1136/bcr-2012-006661.

  91. Yu. M. Parkhomenko., G. V. Donchenko, S. A. Chornyy, et al., “Thiamine metabolism in neurons and their vital capacity upon the action of ethanol and acetaldehyde,“ Neurophysiology, 46, No. 1, 1-9 (2014).

  92. A. S. Hazell, K. V. Rao, N. C. Danbolt, et al., “Selective down-regulation of the astrocyte glutamate transporters GLT-1 and GLAST within the medial thalamus in experimental Wernicke’s encephalopathy,” J. Neurochem., 78, No. 3, 560-568 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. N. Latt and G. Dore, “Thiamine in the treatment of Wernicke encephalopathy in patients with alcohol use disorders,” Int. Med. J., 44, No. 9, 911-915 (2014). 94. E. Rees and L. R. Gowing, “Supplementary thiamine is still important in Alcohol dependence,” Alcohol Alcoholism, 48, No. 1, 88-92 (2013).

  94. R. Nardone, Y. Höller, M. Storti, et al., “Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: a reappraisal,” Sci. World J., 2013, 2013:309143, doi:10.1155/2013/309143. eCollection2013.

    Article  Google Scholar 

  95. S. Afadlal R. Labetoulle, and A. S. Hazell, “Role of astrocytes in thiamine deficiency,” Metab. Brain Dis., 29, No. 4, 1061-1068 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. S. A. Chornyy and Y. M. Parkhomenko, “Comparative characteristics of the action of thiamine antagonists as apoptosis inducers in different types of nerve cells,” Ukr. Biokhim. Zh., 80, No. 5, 76-84 (2008).

    CAS  Google Scholar 

  97. R. K. Sheean, C. L. Lau, Y. S. Shin, et al., “Links between L-glutamate transporters, Na+/K+-ATPase and cytoskeleton in astrocytes: evidence following inhibition with rottlerin,” Neuroscience, 254, 335-346 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. B. H. Shin, S. H. Choi, E. Y. Cho, et al., “Thiamine attenuates hypoxia-induced cell death in cultured neonatal rat cardiomyocytes,” Mol. Cells, 18, No. 2, 133-140 (2004).

    CAS  PubMed  Google Scholar 

  99. P. H. Frederikse, I. P. Farnsworth, and J. S. Zigler, Thiamine deficiency in vivo produces fiber cell degeneration in mouse lenses,” Biochem. Biophys. Res. Commun., 258, No. 3, 703-707 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. D. Ye. Bobkov, I. V. Kropachyova, and G. P. Pinayev, “Multimolecular complexes that contain a P65 subunit of the NF-kB factor and cytoskeletal proteins in A431 cells,” Biol. Membr., 27, No. 1, 133-137 (2010).

  101. R. Comming and R. D. Burgoyne, “Compartmentalization of neuronal cytoskeletal proteins,” Biosci. Rep., 3, No. 11, 997-1006 (1983).

    Article  Google Scholar 

  102. V. A. Berezin and G. M. Shevchenko, “Neurospecific proteins of the cytoskeleton,” Ukr. Biokhim. Zh., 59, No. 1, 105-115 (1987).

    CAS  PubMed  Google Scholar 

  103. A. Murai and E. Katsura, “Thiamine triphosphatase activity of myosin and accelerating effect of thiamine di- and triphosphates on superprecipitation of actomyosin,” J. Nutr. Sci. Vitaminol., 21, No. 3, 169-183 (1975).

    Article  CAS  PubMed  Google Scholar 

  104. I. A. Romero, R. J. Rist, A. Aleshaiker, et al., “Metabolic and permeability changes caused by thiamine deficiency in immortalized rat brain microvessel endothelial cells,” Brain Res., 756, Nos. 1/2, 133-140 (1997).

  105. Z. J. Ke, X. Wang, Z. Fan, and J. Lou, “Ethanol promotes thiamine deficiency-induces neuronal death: involvement of double-stranded RNA-activated protein kinase,” Alcohol Clin. Exp. Res., 33, No. 6, 1097-1103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. L. S. Resende, A. M. Ribeiro, D. Wernerb, et al. “Thiamine deficiency degrades the link between spatial behavior and hippocampal synapsin I and phosphorylated synapsin I protein levels,” Behav. Brain Res., 232, No. 2, 421-425 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. K. M. Cullen and G. M. Halliday, “Mechanisms of cell death in cholinergic basal forebrain neurons in chronic alcoholics,” Metab. Brain Dis., 10, No. 1, 81-91 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. R. Perez-Pineiro, T. C. Bjorndahl, M. V. Berjanski, et al., “The prion protein binds thiamine,” FEBS J., 278, No. 21, 4002-4014 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. N. S. Pagadala, T. C. Bjorndah, N. Blinov, et al., “Molecular docking of thiamine reveals similarity in binding properties between the prion protein and other thiamine-binding proteins,” J. Mol. Model., 19, No. 2, 5225-5235 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. R. Mendoza, M. M. Anderson, and J. Overbaugh, “A putative thiamine transport protein is a receptor for feline leukemia virus subgroup A,” J. Virol., 80, No.7, 3378-3385 (2006).

  111. R. Mendoza, A. D. Miller, and J. Overbaugh, “Disruption of thiamine uptake and growth of cells by feline leukemia virus subgroup A,” J. Virol., 87, No. 5, 2412-2419 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. S. Shoji, K. Furuishi, S. Misumi, et al., “Thiamine disulfide as a potent inhibitor of human immunodeficiency virus (type-1) production,” Biochem. Biophys. Res. Commun., 205, No. 1, 967-975 (1994).

    Article  CAS  PubMed  Google Scholar 

  113. S. Shoji, K. Furuishi, A. Ogata, et al., “An allosteric drug, O,O’-bismyristoyl thiamine disulfide, suppresses HIV-1 replication through prevention of nuclear translocation of both HIV-1 Tat and NF-kappa B,” Biochem. Biophys. Res. Commun., 249, No. 3, 745-753 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. V. Bunik, Y. Parkhomenko, T. Kaehne, et al. “Thiamine and thiazole binding proteome includes DJ-1, amyloid beta and several membrane proteins,” in: Proceeding of the 11th International Conference on Alzheimer’s and Parkinson’s Diseases (Florence, Italy, March 6-10), Florence (2013), Abstract-No: A-459-0001-00462.

  115. G. Mkrtchyan, V. Aleshin, Yu. Parkhomenko, et al., “Molecular mechanisms of the non-coenzyme action of thiamine in brain: biochemical, structural and pathway analysis,” Sci. Rep. 2015, 5, 1258, 1-26, doi: 10.1038/srep 12583 (2015).

  116. N. Lev, D. Roncevic, D. Ickowicz, et al., “Role of DJ-1 in Parkinson’s disease,” J. Mol. Neurosci., 29, No. 3, 215-225 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. N. A. Rege and J. S. Hagood, “Thy-1, a versatile modulator of signaling affecting cellular adhesion, proliferation, survival, and cytokine/growth factor responses,” Biochim. Biophys. Acta, 1763, No. 10, 991-999 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. E. Szirmai, “Thiamine (vitamin B 1) and its effects on the uterine musculature and on the pain during delivery (preliminary report),” Zentralbl. Gynakol., 83, No. 1, 554-555 (1961).

    CAS  PubMed  Google Scholar 

  119. E. Fujihira, Y. Tarumoto, M. Ajioka, et al., “Analgesic effect of O-isobutyrylthiamine disulfide on experimentally induced,” Yakugaku Zasshi., 93, No. 3, 388-391 (1973).

    CAS  PubMed  Google Scholar 

  120. H. Quirin, “Pain and vitamin B therapy,” Bibl. Nutr. Dieta, 38, No. 1, 110-111 (1986).

    Google Scholar 

  121. A. Costantini, M. I. Pala, S. Tundo, et al. “High-dose thiamine improves the symptoms of fibromyalgia,” BMJ Case Rep., 2013, 1-4, doi: 10.1136/bcr-2013-009019 (2013).

    Google Scholar 

  122. S. H. Lee, S. Y. Kim, J. H. Kim, et al. “Phosphoproteomic analysis of electroacupuncture analgesia in an Inflammatory pain rat model,” Mol. Med. Rep., 6, No. 1, 157-162 (2012).

    CAS  PubMed  Google Scholar 

  123. H. M. Beere and D. R. Green,”Stress management – heat shock protein-70 and the regulation of apoptosis,” Trends Cell. Biol., 11, No. 1, 6-10 (2001).

  124. J. V. Y. Rodrigues, B. J. Henriques, T. G. Lucas, et al., “Cofactors and metabolites as protein folding helpers in metabolic diseases,” Curr. Med. Chem., 2, No. 22, 2546-2559 (2012).

    Google Scholar 

  125. S. A. Petrov, “Noncoenzymatic effects of thiamine and its metabolites,” Biomed. Khim., 52, No. 4, 335-345 (2006).

    CAS  PubMed  Google Scholar 

  126. S. A. Petrov, “Inhibition of alcohol dehydrogenase by thiochrome,” Ukr. Biokhim. Zh., 64, No. 6, 91-94 (1992).

    CAS  PubMed  Google Scholar 

  127. S. A. Petrov, O. A. Kotenko, and M. El-Absi, “Effects of thiamine and its metabolites on the activity of tissue and purified lactate dehydrogenase,” Ukr. Biokhim. Zh., 63, No. 2, 105-108 (1991).

    CAS  PubMed  Google Scholar 

  128. A. I. Vovk, L. V. Babii, and I. V. Muraviova, “Relative reaction abilities of thiamine monophosphate and thiamine diphosphate in their interaction with alkaline phosphatase,” Ukr. Biokhim. Zh., 74, No. 1, 93-96 (2002).

    CAS  Google Scholar 

  129. Yu. M. Ostrovskii, S, V, Zabrodskaya, T. I. Zimatkina, et al., “Selective inhibition of pyruvate dehydrogenase in the murine liver and heart by triphosphorus esters of thiochrome and tetrahydrothiamine,” Biokhimiya, 48, No. 6, 928-931 (1983).

  130. S. A. Strumilo, Yu. V. Kiselevskii, N. I. Taranda, et al., “Interaction of the pyruvate dehydrogenase complex from the cardial muscle with thiamine diphosphate and its derivatives,” Vopr. Med. Khim., 35, No. 2, 102-105 (1989).

    CAS  PubMed  Google Scholar 

  131. X. Zhang, I. Hernandez, D. Rei, et al., “Diaminothiazoles modify tau phosphorylation and improve the tauopathy in mouse models,” J. Biol. Chem., 288, No. 3, 22042-22056 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li Chien-Ming, Z. Wang, Y. Lu et al., “Biological activity of 4-substituted methoxybenzoyl-aryl-thiazole: an active microtubule inhibitor,” Cancer Res., 71, No. 1, 216-224 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Parkhomenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkhomenko, Y.M., Pavlova, A.S. & Mezhenskaya, O.A. Mechanisms Responsible for the High Sensitivity of Neural Cells to Vitamin B1 Deficiency. Neurophysiology 48, 429–448 (2016). https://doi.org/10.1007/s11062-017-9620-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-017-9620-3

Keywords

Navigation