Skip to main content

Advertisement

Log in

Nestin in central nervous system cells

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

This literature review reflects current knowledge on the intermediate filament protein nestin, which most authors regard as a marker of “neural stem/progenitor cells.” The structural-functional characteristics of nestin and its presence in various central nervous system cells at different stages of ontogenesis in normal and pathological conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. P. Dyban and P. A. Dyban, “Stem cells in experimental and clinical medicine,” Med. Akad. Zh., 2, No. 3, 3–24 (2002).

    Google Scholar 

  2. D. É. Korzhevskii, M. V. Lentsman, A. B. Gilyarov, et al., “Induction of nestin synthesis in a proportion of rat brain cells by ischemic lesioning,” Morfologiya, 131, No. 1, 23–26 (2007).

    CAS  Google Scholar 

  3. D. É. Korzhevskii, O. V. Kirik, A. V. Gilyarov, et al., “Nestin in rat brain cells after transient total ischemia,” in: Proceedings of the 13th International Congress and 6th School of Evolutionary Physiology (St. Petersburg, 23–28 January 2006) [in Russian], Russian Academy of Sciences Press, St. Petersburg (2006), p. 113.

    Google Scholar 

  4. D. É. Korzhevskii, O. V. Kirik, A. V. Gilyarov, et al., “Reversion of the embryonic phenotype of glial cells in response to transient total brain ischemia,” Morfologiya, 129, No. 2, 48 (2006).

    Google Scholar 

  5. D. É. Korzhevskii, V. A. Otellin, I. P. Grigor’ev, et al., “Structural organization of rat hippocampal astrocytes in the postischemic period,” Morfologiya, 125, No. 6, 19–21 (2004).

    CAS  Google Scholar 

  6. E. P. Kruglyakova, A. V. Khorvyakov, N. P. Shikhanov, et al., “Nestin-expressing cells in the human hippocampus,” Morfologiya, 126, No. 6, 19–25 (2004).

    Google Scholar 

  7. O. V. Podgornyi, Differentiation and Behavior of Neural Stem Cells in Tissue Culture and on Transplantation into the Rat Brain [in Russian], Author’s Abstract of Doctoral Thesis in Biological Sciences, Moscow (2006).

  8. E. A. Savchenko, N. A. Andreeva, T. B. Dmitrieva, et al., “Cultivation of specialized glial cells (olfactory ensheathing cells) from the human olfactory epithelium,” Byull. Éksperim. Biol., 139, No. 4, 510–513 (2005).

    Article  CAS  Google Scholar 

  9. I. About, D. Laurent-Maquin, U. Lendahl, and T. A. Mitsiadis, “Nestin expression in embryonic and adult human teeth under normal and pathological conditions,” Amer. J. Pathol., 157, No. 1, 287–295.

  10. P. M. Almqvist, R. Mah, U. Lendahl, et al., “Immunohistochemical detection of nestin in pediatric brain tumors,” J. Histochem. Cytochem., 50, No. 2, 147–158 (2002).

    PubMed  CAS  Google Scholar 

  11. G. Alondo, E. Galibert, A. Duvoid-Guillou, and A. Vincent, “Hyperosmotic stimulus induces reversible angiogenesis within the hypothalamic magnocellular nuclei of the adult rat: a potential role for neuronal vascular endothelial growth factor,” BMC Neurosci., 6, No. 1, 20 (2005).

    Article  CAS  Google Scholar 

  12. J. Altman and G. D. Das, “Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats,” J. Comp. Neurol., 50, 319–335 (1965).

    Article  Google Scholar 

  13. A. Alvarez-Buylla, B. Seri, and F. Doetsch, “Identification of neural stem cells in the adult vertebrate brain,” Brain Res. Bull., 57, 751–758 (2002).

    Article  PubMed  Google Scholar 

  14. C. Andressen, E. Stocker, F. J. Klinz, et al., “Nestin-specific green fluorescent protein expression in embryonic stem cell-derived neural precursor cells used for transplantation,” Stem Cells, 19, No. 5, 419–424 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. T. Biagiotti, M. D’Amico, I. Marzi, et al., “Cell renewing in neuroblastoma: electrophysiological and immunocytochemical characterization of stem cells and derivatives,” Stem Cells, 24, No. 3, 443–453 (2006).

    Article  PubMed  Google Scholar 

  16. I. Blumcke, J. C. Schewe, S. Normann, et al., “Increase of nestinimmunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy,” Hippocampus, 11, No. 3, 311–321 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. H. A. Cameron and R. D. McKay, “Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus,” J. Comp. Neurol., 435, 406–417 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. E. Cattaneo and R. McKay, “Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor,” Nature, 347, 762–765 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. M. C. Cheeran, S. Hu, H. T. Ni, et al., “Neural precursor cell susceptibility to human cytomegalovirus diverges along glial or neuronal differentiation pathways,” J. Neurosci. Res., 82, No. 6, 839–850 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. Y.-H. Chou, S. Khuon, H. Hermann, and R. Goldman, “Nestin promotes the phosphorylation-dependent disassembly of vimentin intermediate filaments during mitosis,” Mol. Biol. Cell., 14, 1468–1478 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. S. R. Clarke, A. K. Shetty, J. L. Bradley, and D. A. Turner, “Reactive astrocytes express the embryonic intermediate neurofilament nestin,” Neuroreport, 5, 1885–1888 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. G. M. Cooper, The Cell: a Molecular Approach, ASM Press (1997).

  23. C. G. Craig, R. D’Sa, C. M. Morshead, et al., “Migrational analysis of the constitutively proliferating subependymal population in adult mouse forebrain,” Neurosci., 93, 1197–1206 (1999).

    Article  CAS  Google Scholar 

  24. J. Dahlstrand, V. P. Collins, and U. Lendahl, “Expression of the class VI intermediate filament nestin in human central nervous system tumors,” Cancer Res., 52, No. 19, 5334–5441 (1992).

    PubMed  CAS  Google Scholar 

  25. J. Dahlstrand, L. Zimmerman, R. McKay, and U. Lendahl, “Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments,” J. Cell. Sci., 103, 589–597 (1992).

    PubMed  CAS  Google Scholar 

  26. J. Dahlstrand, M. Lardelli, and U. Lendahl, “Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system,” Devl. Brain Res., 84, 109–129 (1995).

    Article  CAS  Google Scholar 

  27. M. Deshpande, J. Zheng, K. Borgmann, et al., “Role of activated astrocytes in neuronal damage: potential links to HIV-1-associated dementia,” Neurotox. Res., 7, No. 3, 183–192 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. P. Dore-Duffy, A. Katychev, X. Wang, and E. Van Buren, “CNS microvascular pericytes exhibit multipotential stem cell activity,” J. Cereb. blood Flow Metab., 26, No. 5, 613–624 (2006).

    Article  PubMed  CAS  Google Scholar 

  29. N. Duggal, R. Schmidt-Kastner, and A. M. Hakim, “Nestin expression in reactive astrocytes following focal cerebral ischemia in rats,” Brain Res., 768, 1–9 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. C. Eliason, C. Sahlgren, C. Berthold, et al., “Intermediate filament protein partnership in astrocytes,” J. Biol. Chem., 274, 23996–24006 (1999).

    Article  Google Scholar 

  31. J. Eriksson, D. Brautigan, R. Vallee, et al., “Cytoskeletal integrity in interphase cells requires protein phosphatase activity,” Proc. Natl. Acad. Sci. USA, 89, 11093–11097 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. C. Ernst and B. R. Christie, “Nestin-expressing cells and their relationship to mitotically active cells in the subventricular zones of the adult rat,” Eur. J. Neurosci., 22, No. 12, 3059–3066 (2005).

    Article  PubMed  Google Scholar 

  33. G. Forte, M. Minieri, P. Cossa, et al., “Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation,” Stem Cells, 24, No. 1, 23–33 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. K. Frojdman, L. Pelliniemi, U. Lendahl, et al., “The intermediate filament protein nestin occurs transiently in differentiating testis of rat and mouse,” Differentiation, 61, 243–249 (1997).

    PubMed  CAS  Google Scholar 

  35. S. Fukuda, F. Kato, Y. Tozuka, M. Yamaguchi, et al., “Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus,” J. Neurosci., 23, No. 28, 9357–9366 (2003).

    PubMed  CAS  Google Scholar 

  36. F. H. Gage, “Neurogenesis in the adult brain,” J. Neurosci., 22, 612–613 (2002).

    PubMed  CAS  Google Scholar 

  37. L. Graham, P. R. Cooper, N. Cassidy, et al., “The effect of calcium hydroxide on solubilisation of bio-active dentine matrix components,” Biomaterials, 27, No. 14, 2865–2873 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. Z. He, L. Cui, J. F. Meschia, et al., “Hippocampal progenitor cells express nestin following cerebral ischemia in rats,” Neuroreport, 16, No. 14, 1541–1544 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. H. Herrmann and U. Aebi, “Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics,” Curr. Opin. Cell Biol., No. 12, 79–90 (2000).

    Google Scholar 

  40. D. C. Hess, W. D. Hill, A. Martin-Studdard, et al., “Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke,” Stroke, 33, 1362–1368 (2002).

    Article  PubMed  Google Scholar 

  41. N. Hirokawa, N. Glicksman, and M. Willard, “Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton,” J. Cell. Biol., 98, 1523–1536 (1984).

    Article  PubMed  CAS  Google Scholar 

  42. S. Hisanaga and N. Hirokawa, “Structure of the peripheral domains of neurofilaments revealed by low angle rotary shadowing,” J. Mol. Biol., 202, 297–305 (1988).

    Article  PubMed  CAS  Google Scholar 

  43. S. Hockfield and R. D. G. McKay, “Identification of major cell classes in the developing mammalian nervous system,” J. Neurosci., 5, 3310–3328 (1985).

    PubMed  CAS  Google Scholar 

  44. B. D. Hoehn, T. D. Palmer, and G. K. Steinberg, “Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin,” Stroke, 36, No. 12, 2718–2724 (2005).

    Article  PubMed  CAS  Google Scholar 

  45. R. H. Hoffman, “The pluripotency of hair follicle stem cells,” Cancer Biol. Ther., 5, No. 3, 232–233 (2006).

    CAS  Google Scholar 

  46. S. Holmin, C. von Gertten, A. C. Sandberg-Nordqvist, et al., “Induction of astrocytic nestin expression by depolarization in rats,” Neurosci. Lett., 314, No. 3, 151–155 (2001).

    Article  PubMed  CAS  Google Scholar 

  47. S. Holmin, P. Almqvist, U. Lendahl, and T. Mathiesen, “Adult nestin-expressing subependymal cells differentiate to astrocytes in response to brain injury,” Eur. J. Neurosci., 9, 65–75 (1997).

    Article  PubMed  CAS  Google Scholar 

  48. P. J. Horner and F. H. Gage, “Regenerating the damaged central nervous system,” Nature, 407, 963–970 (2000).

    Article  PubMed  CAS  Google Scholar 

  49. T. Itoh, T. Satou, S. Hashimoto, and H. Ito, “Isolation of neural stem cells from damaged rat cerebral cortex after traumatic brain injury,” Neuroreport, 16, No. 15, 1687–1691 (2005).

    Article  PubMed  Google Scholar 

  50. H. Kambara, H. Okano, E. A. Chiocca, and Y. Saeki, “An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor,” Cancer Res., 65, No. 7, 2832–2839 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. S. S. Kaya, A. Mahmood, Y. Li, et al., “Expression of nestin after traumatic brain injury in rat brain,” Brain Res., 840, 153–157 (1999).

    Article  CAS  Google Scholar 

  52. S. G. Kernie, T. M. Erwin, and L. F. Parada, “Brain remodeling due to neuronal and astrocytic proliferation after controlled cortical injury in mice,” J. Neurosci. Res., 66, No. 3, 317–326 (2001).

    Article  PubMed  CAS  Google Scholar 

  53. M. Khelfauoi, F. Guimiot, and M. Simonneau, “Early neuronal and glial determination from mouse E10.5 telencephalon embryonic stem cells: an in vitro study,” Neuroreport, 13, No. 9, 1209–1214 (2002).

    Article  Google Scholar 

  54. S. Koenig, P. Krause, B. Drabent, et al., “The expression of mesenchymal, neural and haematopoietic stem cell markers in adult hepatocytes proliferating in vitro,” J. Hepatol., 44, No. 6, 1115–1124 (2006).

    Article  PubMed  CAS  Google Scholar 

  55. H. Kohno, T. Sakai, and K. Kitahara, “Induction of nestin, Ki-67, and cyclin D1 expression in Muller cells after laser injury in adult rat retina,” Graefes Arch. Clin. Exptl. Ophthalmol., 244, No. 1, 90–95 (2006).

    Article  CAS  Google Scholar 

  56. U. Lendahl, L. Zimmerman, and R. D. McKay, “CNS stem cells express a new class of intermediate filament protein,” Cell, 60, No. 4, 585–595 (1990).

    Article  PubMed  CAS  Google Scholar 

  57. Y. Li and M. Chopp, “Temporal profile of nestin expression after focal cerebral ischemia in adult rat,” Brain Res., 838, 1–10 (1999).

    Article  PubMed  CAS  Google Scholar 

  58. C. Lothian and U. Lendahl, “An evolutionary conserved region in the second intron of the human nestin gene directs gene expression to CNS progenitor cells and to early neural crest cells,” Eur. J. Neurosci., 9, 452–462 (1997).

    Article  PubMed  CAS  Google Scholar 

  59. M. B. Luskin, “Neuroblasts of the postnatal mammalian forebrain: their phenotype and fate,” J. Neurobiol., 36, 221–233 (1998).

    Article  PubMed  CAS  Google Scholar 

  60. M. Marvin, J. Dahlstrand, U. Lendahl, and R. McKay, “A rod end deletion in the intermediate filament protein nestin alters its subcellular localization in neuroepithelial cells of transgenic mice,” J. Cell Sci., 111, 1951–1961 (1998).

    PubMed  CAS  Google Scholar 

  61. R. J. Medina, K. Kataoka, M. Takaishi, et al., “Isolation of epithelial stem cells from dermis by a three-dimensional culture system,” J. Cell. Biochem., 98, No. 1, 174–184 (2006).

    Article  PubMed  CAS  Google Scholar 

  62. K. Michalczyk and M. Ziman, “Nestin structure and predicted function in cellular cytoskeletal organization,” Histol. Histopathol., 20, 665–671 (2005).

    PubMed  CAS  Google Scholar 

  63. J. Mokry, D. Cizkova, S. Filip, et al., “Nestin expression by newly formed human blood vessels,” Stem Cell. Dev., 13, No. 6, 658–664 (2004).

    Article  CAS  Google Scholar 

  64. T. Nakagawa, O. Miyamoto, N. A. Janjua, et al., “Localization of nestin in amygdaloid kindled rat: an immunoelectron microscopic study,” Can. J. Neurol. Sci., 31, No. 4, 514–519 (2004).

    PubMed  Google Scholar 

  65. T. Nakamura, G. Xi, Y. Hua, et al., “Nestin expression after experimental intracerebral hemorrhage,” Brain Res., 981, 108–117 (2003).

    Article  PubMed  CAS  Google Scholar 

  66. K. Ogita, N. Nishiyama, C. Sugiyama, “Regeneration of granule neurons after lesioning of hippocampal dentate gyrus: Evaluation using adult mice treated with trimethyltin chloride as a model,” J. Neurosci. Res., 82, No. 5, 609–621 (2005).

    Article  PubMed  CAS  Google Scholar 

  67. J. M. Parent, “Injury-induced neurogenesis in the adult mammalian brain,” Neuroscientist, 9, 261–272 (2003).

    Article  PubMed  Google Scholar 

  68. J. R. Parfitt, C. A. McLean, M. G. Joseph, et al., “Granular cell tumours of the gastrointestinal tract: expression of nestin and clinicopathological evaluation of 11 patients,” Histopathology, 48, No. 4, 424–430 (2006).

    Article  PubMed  CAS  Google Scholar 

  69. K. Parker and G. J. Pilkington, “Morphological, immunocytochemical and flow cytometric in vitro characterisation of a surface-adherent medulloblastoma,” Anticancer Res., 25, No. 6B, 3855–3863 (2005).

    PubMed  CAS  Google Scholar 

  70. M. Pekny, C. B. Johansson, C. Eliasson, et al., “Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin,” J. Cell Biol., 145, No. 3, 503–514 (1999).

    Article  PubMed  CAS  Google Scholar 

  71. A. C. Rice, A. Khaldi, H. B. Harvey, et al., “Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury,” Exptl. Neurol., 183, No. 2, 406–417 (2003).

    Article  CAS  Google Scholar 

  72. C. Sahlgren, A. Mikhailov, J. Hellman, et al., “Mitotic reorganization of the intermediate filament protein nestin involves phosphorylation by cdc2 kinase,” J. Biol. Chem., 276, 16456–16463 (2001).

    Article  PubMed  CAS  Google Scholar 

  73. H. Salman, P. Ghosh, and S. G. Kernie, “Subventricular zone neural stem cells remodel the brain following traumatic injury in adult mice,” J. Neurotrauma, 21, No. 3, 283–292 (2004).

    Article  PubMed  Google Scholar 

  74. O. Skalli, Y.-H. Chou, and R. Goldman, “Intermediate filaments: not so tough after all,” Trends Cell Biol., 2, 308–312 (1992).

    Article  PubMed  CAS  Google Scholar 

  75. H. J. Song, C. F. Stevens, and F. H. Gage, “Neural stem cells from adult hippocampus develop essential properties of functional CMS neurons,” Nat. Neurosci., 5, 438–445 (2002).

    PubMed  CAS  Google Scholar 

  76. J. P. Taylor, R. Sater, J. French, et al., “Transcription of intermediate filament genes is enhanced in focal cortical dysplasia,” Acta Neuropathol. (Berlin), 102, No. 2, 141–148 (2001).

    CAS  Google Scholar 

  77. Y. Tomita, K. Matsumara, Y. Wakamatsu, et al., “Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart,” J. Cell Biol., 170, No. 7, 1135–1146 (2005).

    Article  PubMed  CAS  Google Scholar 

  78. A. B. Tonchev, T. Yamashima, K. Sawamoto, and H. Okano, “Enhanced proliferation of progenitor cells in the subventricular zone and limited neuronal production in the striatum and neo-cortex of adult macaque monkeys after global cerebral ischemia,” J. Neurosci. Res., 81, No. 6, 776–788 (2005).

    Article  PubMed  CAS  Google Scholar 

  79. P. Toti, M. Regoli, G. Nesi, et al., “Nestin expression in normal adrenal gland and adrenocortical tumors,” Histol. Histopathol., 20, No. 4, 1115–1120 (2005).

    PubMed  CAS  Google Scholar 

  80. U. Ueno, Y. Yamada, R. Watanabe, et al., “Nestin-positive cells in adult pancreas express amylase and endocrine precursor cells,” Pancreas, 31, No. 2, 126–131 (2005).

    Article  PubMed  CAS  Google Scholar 

  81. G. van Marle, J. M. Antony, C. Silva, et al., “Aberrant cortical neurogenesis in a pediatric neuroAIDS model: neurotrophic effects of growth hormone,” AIDS, 19, No. 16, 1781–1791 (2005).

    Article  PubMed  Google Scholar 

  82. K. Warfvinge, J. F. Kilgaard, E. B. Lavik, et al., “Retinal progenitor cell xenografts to the pig retina: morphologic integration and cytochemical differentiation,” Arch. Ophthalmol., 123, No. 10, 1385–1393 (2005).

    Article  PubMed  Google Scholar 

  83. S. Wislet-Gendebien, G. Hans, P. Leprince, et al., “Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype,” Stem Cells, 23, No. 3, 392–402 (2005).

    Article  PubMed  CAS  Google Scholar 

  84. Y. Li and M. Chopp, “Temporal profile of nestin expression after focal cerebral ischemia in adult rat,” Brain Res., 838, 1–10 (1999).

    Article  PubMed  CAS  Google Scholar 

  85. Z. Ying, J. Gonzalez-Martinez, C. Tilelli, et al., “Expression of neural stem cell surface marker CD133 in balloon cells of human focal cortical dysplasia,” Epilepsia, 46, No. 11, 1716–1723 (2005).

    Article  PubMed  CAS  Google Scholar 

  86. H. You, Y. I. Kim, S. Y. Im, et al., “Immunohistochemical study of central neurocytoma, subependymoma, and subependymal giant cell astrocytoma,” J. Neurooncol., 74, No. 1, 1–8 (2005).

    Article  PubMed  Google Scholar 

  87. N. Zecevic, Y. Chen, and R. Filipovic, “Contributions of cortical subventricular zone to the development of the human cerebral cortex,” J. Comp. Neurol., 491, No. 2, 109–122 (2005).

    Article  PubMed  Google Scholar 

  88. F. C. Zhou, Y. Sari, T. Powrozek, et al., “Moderate alcohol exposure compromises neural tube midline development in prenatal brain,” Brain Res. Dev. Brain Res., 144, No. 1, 43–55 (2003).

    Article  PubMed  CAS  Google Scholar 

  89. L. Zimmerman, B. Parr, U. Lendahl, et al., “Independent regulatory elements in the nestin gene direct trans gene expression to neural stem cells or muscle precursors,” Neuron, 12, 11–24 (1994).

    Article  PubMed  CAS  Google Scholar 

  90. J. Zou, E. Yaoita, Y. Watanabe, et al., “Upregulation of nestin, vimentin, and desmin in rat podocytes in response to injury,” Virch. Arch., 448, No. 4, 485–492 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Morfologiya, Vol. 131, No. 1, pp. 85–90, January–February, 2007.

Director: Corresponding Member of the Russian Academy of Medical Sciences Professor V. A. Otellin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilyarov, A.V. Nestin in central nervous system cells. Neurosci Behav Physi 38, 165–169 (2008). https://doi.org/10.1007/s11055-008-0025-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-0025-z

Key words

Navigation