Skip to main content

Advertisement

Log in

Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The scope of this review involves one of the most promising branches of new-generation biomedicine, namely magnetic nanotheranostics using remote control of functionalized magnetic nanoparticles (f-MNPs) by means of alternating magnetic fields (AMFs). The review is mainly focused on new approach which utilizes non-heating low frequency magnetic fields (LFMFs) for nanomechanical actuation of f-MNPs. This approach is compared to such traditional ones as magnetic resonance imaging (MRI) and radio-frequency (RF) magnetic hyperthermia (MH) which utilize high frequency heating AMF. The innovative principles and specific models of non-thermal magnetomechanical actuation of biostructures by MNP rotational oscillations in LFMF are described. The discussed strategy allows biodistribution monitoring in situ, delivering drugs to target tissues and releasing them with controlled rate, controlling biocatalytic reaction kinetics, inducing malignant cell apoptosis, and more. Optimization of both LFMF and f-MNP parameters may lead to dramatic improvement of treatment efficiency, locality, and selectivity on molecular or cellular levels and allow implementing both drug and drugless, i.e., pure nanomechanical therapy, in particular cancer therapy. The optimal parameters within this approach differ significantly from those used in MH or MRI because of the principal difference in the f-MNP actuation modes. It is shown that specifically designed high gradient, steady magnetic field enables diagnostic and therapeutic LFMF impact localization in the deep tissues within the area ranging from a millimeter to a few centimeters and 3D scanning of affected region, if necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

AIDS:

Acquired immune deficiency syndrome

AMF:

Alternating magnetic field

AZTTP:

3′-Azido-3′-deoxythymidine-5′-triphosphate

BBB:

Blood-brain barrier

CT:

Computerized tomography

EMF:

Electromagnetic field

FFP:

Field-free point

f-MNP:

Functionalized magnetic nanoparticle

HD:

Hydrodynamics

LFMF:

Low frequency magnetic field

ME:

Magneto-electrical

MENP:

Magneto-electrical nanoparticle

MF:

Magnetic field

MM:

Macromolecule

MMA:

Magnetomechanical actuation

MNP:

Magnetic nanoparticle

MPI:

Magnetic particle imaging

MRI:

Magnetic resonance imaging

MT:

Magnetic tweezer

NFS:

Nanopore force spectroscopy

OT:

Optical tweezer

PET:

Positron emission tomography

RFMF:

Radio-frequency magnetic field

RFMH:

Radio-frequency magnetic hyperthermia

SAR:

Specific absorption rate

SMFS:

Single-molecule force spectroscopy

SPECT:

Single-photon emission computerized tomography

US:

Ultrasound

References

  • Abakumov MA, Nukolova NV, Sokolsky-Papkov M, Shein SA, Sandalova TO, Vishwasrao HM, Grinenko NF, Gubsky IL, Abakumov AM, Kabanov AV, Chekhonin VP (2015) VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine: Nanotechnology, Biology, and Medicine 11:825–833. doi:10.1016/j.nano.2014.12.011

    Google Scholar 

  • Ahmed Z, Wieraszko A (2015) Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism. Bioelectromagnetics 36:386–397. doi:10.1002/bem.21917

    Article  Google Scholar 

  • Al-Ahmady ZS, Chaloin O, Kostarelos K (2014) Monoclonal antibody-targeted, temperature-sensitive liposomes: In vivo tumor chemotherapeutics in combination with mild hyperthermia. J of Control Release 196:332–343. doi:10.1016/j.jconrel.2014.10.013

    Article  Google Scholar 

  • Alegre-Cebollada J, Perez-Jimenez R, Kosuri P, Fernandez JM (2010) Single-molecule force spectroscopy approach to enzyme catalysis. J Biol Chem 285:18961–18966. doi:10.1074/jbc.R109.011932

    Article  Google Scholar 

  • Allia P, Tiberto P (2011) Dynamic effects of dipolar interactions on the magnetic behavior of magnetite nanoparticles. J Nanopart Res 13:7277–7293. doi:10.1007/s11051-011-0642-2

    Article  Google Scholar 

  • Alphandery E, Chebbi I, Guyot F, Durand-Dubief M (2013) Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: a review. Int J Hyperth 29:801–809. doi:10.3109/02656736.2013.821527

    Article  Google Scholar 

  • Alshits VI, Darinskaya EV, Koldaeva MV, Petrzhik EA (2008) Magnetoplastic effect in nonmagnetic crystals. In: Hirth JP (ed) Dislocations in Solids, vol 14. Elsevier, Amsterdam, pp 333–437

    Google Scholar 

  • Amorino GP, Fox MH (1996) Effect of hyperthermia on intracellular chloride. J Membr Biol 152:217–222. doi:10.1007/s002329900099

    Article  Google Scholar 

  • Amstad E, Kohlbrecher J, Muller E, Schweizer T, Textor M, Reimhult E (2011) Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett 11:1664–1670. doi:10.1021/nl2001499

    Article  Google Scholar 

  • Andrä W, Nowak H (eds) (2007) Magnetism in medicine: a handbook, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Andrä W, d'Ambly CG, Hergt R, Hilger I, Kaiser WA (1999) Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J of Magnetism and Magnetic Materials 194:197–203. doi:10.1016/s0304-8853(98)00552-6

    Article  Google Scholar 

  • Baetke SC, Lammers T, Kiessling F (2015) Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 88:20150207. doi:10.1259/bjr.20150207

    Article  Google Scholar 

  • Baeza A, Guisasola E, Ruiz-Hernández E, Vallet-Regí M (2012) Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem Mater 24:517–524. doi:10.1021/cm203000u

    Article  Google Scholar 

  • Baláž P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin

    Google Scholar 

  • Banchelli M, Nappini S, Montis C, Bonini M, Canton P, Bertia D, Baglioni P (2014) Magnetic nanoparticle clusters as actuators of ssDNA release. Phys Chem Chem Phys 16:10023–10031. doi:10.1039/C3CP55470H

    Article  Google Scholar 

  • Bañobre-López M, Piñeiro Y, López-Quintela MA, Rivas J (2014) Magnetic nanoparticles for biomedical applications. In: Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (eds) Handbook of nanomaterials properties. Springer, Berlin, pp 457–493

    Chapter  Google Scholar 

  • Barbosa N, Agulles-Pedrós L, Daza A, Lozano A (2013) Non-ionizing biological effects and security issues in magnetic resonance. Rev Colomb Radiol 24(4):3790–3795

    Google Scholar 

  • Barnes FS, Greenebaum B (eds) (2007) Handbook of biological effects of electromagnetic fields. Bioengineering and biophysical aspects of electromagnetic fields, Third edn. CRC, Boca Raton

    Google Scholar 

  • Barnes FS, Greenebaum B (2015) The effects of weak magnetic fields on radical pairs. Bioelectromagnetics 36:45–54. doi:10.1002/bem.21883

    Article  Google Scholar 

  • Bauer S, Wiest R, Nolte LP, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 58:R97–R129. doi:10.1088/0031-9155/58/13/R97

    Article  Google Scholar 

  • Bichurin M, Petrov V, Srinivasan G (2003) Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys Rev B 68: 054402-(1–13). doi: 10.1103/PhysRevB.68.054402

  • Bietenbeck M, Florian A, Faber C, Sechtem U, Yilmaz A (2016) Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now? Int J of Nanomedicine. 11:3191–3203. doi:10.2147/IJN.S110542

    Article  Google Scholar 

  • Bingi VN (2011) Fundamentals of electromagnetic biophysics. PysMatLit, Moscow (in Russian)

  • Bingi VN, Savin AV (2003) Effects of weak magnetic fields on biological systems: physical aspects. Physics-Uspekhi 46:259–291. doi:10.1070/PU2003v046n03ABEH001283

    Article  Google Scholar 

  • Binhi VN (2002) Magnetobiology: underlying physical problems. Academic, San Diego

    Google Scholar 

  • Stavroulakis P (ed) (2003) Biological effects of electromagnetic fields. Springer, Berlin

    Google Scholar 

  • Bohara RA, Thorat ND, Pawar SH (2016) Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv 6:43989–44012. doi:10.1039/C6RA02129H

    Article  Google Scholar 

  • Bohara RA, Throat ND, Chaurasia AK, Pawar SH (2015) Cancer cells extinction through magnetic fluid hyperthermia treatment produced by superparamagnetic Co-Zn ferrite nanoparticles. RSC Adv 5:47225–47234. doi:10.1039/C5RA04553C

    Article  Google Scholar 

  • Bohara RA, Yadav HM, Throat ND, Mali SS, Hong CK, Nanaware SG, Pawar SH (2014) Synthesis of functionalized Co0.5Zn0.5Fe2O4 nanoparticles for biomedical applications. J. of Magnetism and Magnetic Materials 378:397–401. doi:10.1016/j.jmmm.2014.11.063

    Article  Google Scholar 

  • Bohnert J, Gräser M, Gleich B, Dössel O (2012) Experimental thresholds of magnetically induced currents via a figure-of-eight coil up to 25 kHz. Biomed Tech 57:185–191. doi:10.1515/bmt-2012-0007

  • Branquinho LC, Marcus S, Carrião MS, Costa AS, Zufelato N, Sousa MH, Miotto R, Ivkov R, Bakuzis AF (2013) Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci Rep 3: 2887-(1–10). doi:10.1038/srep02887

  • Brezovich IA (1988) Low frequency hyperthermia: capacitive and ferromagnetic seed methods. Med Phys Monograph 16:82–111

    Google Scholar 

  • Brocklehurst B (2002) Magnetic fields and radical reactions: recent developments and their role in nature. Chem Soc Rev 31(5):301–311. doi:10.1039/B107250C

    Article  Google Scholar 

  • Buchachenko AL (2014) Magnetic field-dependent molecular and chemical processes in biochemistry, genetics and medicine. Russ Chem Rev 83(1):1–12. doi:10.1070/RC2014v083n01ABEH004335

    Article  Google Scholar 

  • Buchachenko AL (2015) Magneto-biology and medicine. Nova Science, New York

    Google Scholar 

  • Buchachenko AL (2016) Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics 37:1–13. doi:10.1002/bem.21947

    Article  Google Scholar 

  • Buckway B, Ghandehari H (2016) Nanotheranostics and in-vivo imaging. In: Howard KA et al (eds) Nanomedicine advances in delivery science and technology. Springer, New York, pp 97–129. doi:10.1007/978-1-4939-3634-2_6

    Google Scholar 

  • Bustamante C, Chemla YR, Forde NR, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748

    Article  Google Scholar 

  • Buzug TM, Borgert J (eds) (2012) Magnetic particle imaging. A novel SPIO nanoparticle imaging technique. Springer

  • Cai X, Yang F, Gu N (2012) Applications of magnetic microbubbles for theranostics. Theranostics 2:103–112. doi:10.7150/thno.3464

    Article  Google Scholar 

  • Carslaw HS, Jaeher JC (1959) Conduction of heat in solids. Clarendon, Oxford

    Google Scholar 

  • Cervadoro A, Giverso C, Pande R, Sarangi S, Preziosi L, Wosik J, Brazdeikis A, Decuzzi P (2012) Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles. PLoS One 8(2): e57332-(1–14)

  • Chang L, Liu XL, Fan DD, Miao YQ, Zhang H, Ma HP, Liu QY, Ma P, Xue WM, Luo YE, Fan HM (2016) The efficiency of magnetic hyperthermia and in vivo histocompatibility for human-like collagen protein-coated magnetic nanoparticles. Int. J. of Nanomedicine 2016:1175–1185. doi:10.2147/IJN.S101741

    Google Scholar 

  • Chen SW, Lai JJ, Chiang CL, Chen CL (2012) Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles. Rev Sci Instrum 83(6):064701. doi:10.1063/1.4723814

    Article  Google Scholar 

  • Chen X, Gambhir SS, Cheon J (2011) Theranostic nanomedicine. Acc Chem Res 44:841–1134. doi:10.1021/ar200231d

    Article  Google Scholar 

  • Cheng Z, Zaki AA, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338:903–910. doi:10.1126/science.1226338

    Article  Google Scholar 

  • Chiolerio A, Chiodoni A, Allia P, Martino P (2014) Magnetite and other Fe-oxide nanoparticles. In: Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (eds) Handbook of nanomaterials properties. Springer, Berlin, pp 213–246

    Chapter  Google Scholar 

  • Cochran DB, Wattamwar PP, Wydra R, Hilt JZ, Anderson KW, Eitel RE, Dziubla TD (2013) Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles. Biomaterials 34:9615–9622. doi:10.1016/j.biomaterials.2013.08.025

    Article  Google Scholar 

  • Coffey WT, Kalmykov YP, Waldron JT (2004) The Langevin equation, with applications to stochastic problems in physics, chemistry, and electrical engineering, 2nd edn. World Scientific Publishing Co., Pte. Ltd., Singapore

    Book  Google Scholar 

  • Cohen Y, Shoushan SY (2013) Magnetic nanoparticles-based diagnostics and theranostics. Curr Opin Biotechnol 24:1–10. doi:10.1016/j.copbio.2013.01.006

    Article  Google Scholar 

  • Contreras MF, Sougrat R, Zaher A, Ravasi T, Kosel J (2015) Non-chemotoxic induction of cancer cell death using magnetic nanowires. Int J Nanomedicine 10:2141. doi:10.2147/IJN.S77081

    Article  Google Scholar 

  • Creixell M, Bohorquez AC, Torres-Lugo M, Rinaldi C (2011) EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5:7124–7129. doi:10.1021/nn201822b

    Article  Google Scholar 

  • Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783. doi:10.1038/nnano.2007.388

    Article  Google Scholar 

  • CSS K (ed) (2009) Magnetic nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • de la Presa P, Luengo Y, Multigner M, Costo R, Morales MP, Rivero G, Hernando A (2012) Study of heating efficiency as a function of concentration, size, and applied field in γ Fe2O3 nanoparticles. J Phys Chem C 116:25602–25610. doi:10.1021/jp310771p

    Article  Google Scholar 

  • Demirci U, Khademhosseini A, Langer R, Blander J (2013) Microfluidic technologies for human health. World Scientific, Singapore

    Book  Google Scholar 

  • Devadasu VR, Bhardwaj V, Kumar MNVR (2013) Can controversial nanotechnology promise drug delivery. Chem Rev 113(3):1686–1735. doi:10.1021/cr300047q

    Article  Google Scholar 

  • Di Corato R, Espinosa A, Lartigue L, Tharaud M, Chat S, Pellegrino T, Ménager C, Gazeau F, Wilhelm C (2014) Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35(24):6400–6411. doi:10.1016/j.biomaterials.2014.04.036

    Article  Google Scholar 

  • Doane TL, Burda C (2012) The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 41:2885–2911. doi:10.1039/c2cs15260f

    Article  Google Scholar 

  • Dobson J (2008a) Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol 3:139–143. doi:10.1038/nnano.2008.39

    Article  Google Scholar 

  • Dobson J (2010) Cancer therapy: A twist on tumour targeting. Nat Mater 9:95–96. doi:10.1038/nmat2604

    Article  Google Scholar 

  • Dobson J, Cartmell SH, Keramane A, El Haj AJ (2006a) Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Trans Nanobioscience 5:173–177

    Article  Google Scholar 

  • Dobson J, Cartmell SH, Keramane A, Haj AJE (2006b) Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Trans Nanobiosci 5:173–177. doi:10.1109/TNB.2006.880823

    Article  Google Scholar 

  • Dobson J, Keramane A, El Haj AJ (2002) Theory and applications of magnetic force bioreactor. European Cells and Materials 4:42–44

    Google Scholar 

  • Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C (2013) Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 7:5091–5101. doi:10.1021/nn4007048

    Article  Google Scholar 

  • Dong C, Hu X, Dinu CZ (2016) Current status and perspectives in atomic force microscopy-based identification of cellular transformation. Int J Nanomedicine 11:2107–2118

    Article  Google Scholar 

  • Dong H, Du S, Zheng X, Lyu G, Sun L, Li L, Zhang P, Zhang C, Yan C (2015a) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115:10725–10815. doi:10.1021/acs.chemrev.5b00091

    Article  Google Scholar 

  • Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH (2015b) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115(19):10725–10815. doi:10.1021/acs.chemrev.5b00091

    Article  Google Scholar 

  • Dutz S, Hergt R (2014) Magnetic particle hyperthermia—a promising tumour therapy? Nanotechnology 25:452001–452029. doi:10.1088/0957-4484/25/45/452001

    Article  Google Scholar 

  • Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–765. doi:10.1038/nature05023

    Article  Google Scholar 

  • Environmental and Workplace Health (2015) Limits of human exposure to radiofrequency electromagnetic energy in the frequency range from 3 kHz to 300 GHz. Consumer and Clinical Radiation Protection Bureau Environmental and Radiation Health Sciences Directorate Healthy Environments and Consumer Safety Branch Health Canada. Safety Code 6

  • Environmental Health Criteria 238 (2007) Extremely low frequency (ELF) fields. World Health Organization, Geneva

    Google Scholar 

  • Estelrich J, Sánchez-Martín MJ, Busquets MA (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine 10:1727–1741. doi:10.2147/IJN.S76501

    Google Scholar 

  • Etheridge ML, Hurley KR, Zhang J, Jeon S, Ring HL, Hogan C, Haynes CL, Garwood M, Bischof JC (2014) Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology 2(3):214–228. doi:10.1142/S2339547814500198

    Article  Google Scholar 

  • Evans E, Heinrich V (2003) Dynamic strength of fluid membranes. C.R Physique 4:265–274. doi:10.1016/s1631-0705(03)00044-6

    Article  Google Scholar 

  • FCC (2013) Human exposure to radiofrequency electromagnetic fields. Final Rule. ET Docket No. 03-137, FCC 13–39. 78 FR 33634. https://www.federalregister.gov/articles/2013/06/04/2013-12716/human-exposure-to-radiofrequency-electromagnetic-fields. Accessed 16 May 2016

  • Fortin JP, Gazeau F, Wilhelm C (2008) Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur Biophys J 37:223–228. doi:10.1007/s00249-007-0197-4

    Article  Google Scholar 

  • Funk RHW, Monsees T, Özkucur N (2009) Electromagnetic effects—from cell biology to medicine. Prog Histochem Cytochem 43(4):177–264. doi:10.1016/j.proghi.2008.07.001

    Article  Google Scholar 

  • Funkhouser J (2002) Reinventing pharma: theranostic revolution. Curr Drug Discovery 2:17–19

    Google Scholar 

  • Gazeau F, Levy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3(6):832–844

    Article  Google Scholar 

  • Giordano MA, Gutierrez G, Rinaldi C (2010) Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia. Int J Hyperth 26:475–484. doi:10.3109/02656731003749643

    Article  Google Scholar 

  • Gleich B (2014) Principles and applications of magnetic particle imaging. Springer

  • Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435(30):1114–1217. doi:10.1038/nature03808

    Google Scholar 

  • Golovin Y, Morgunov R, Baskakov A (2002) Magnetoresonant softening of solids. Mol Phys 100:1291–1296. doi:10.1080/00268970110109763

    Article  Google Scholar 

  • Golovin YI (2004) Magnetoplastic effects in solids. Review Physics of the Solid State 46:789–824. doi:10.1134/1.1744954

    Article  Google Scholar 

  • Golovin YI, Gribanovskii SL, Golovin DY, Klyachko N, Kabanov A (2014) Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules. Phys Solid State 56:1342–1351. doi:10.1134/S1063783414070142

    Article  Google Scholar 

  • Golovin YI, Gribanovsky SL, Golovin DY, Klyachko NL, Majouga AG, Master АM, Sokolsky M, Kabanov AV (2015) Towards nanomedicines of the future: remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. J Control Release 219:43–60. doi:10.1016/j.jconrel.2015.09.038

    Article  Google Scholar 

  • Golovin YI, Gribanovsky SL, Golovin DY, Zhigachev AO, Klyachko NL, Majouga AG, Sokolsky M, Kabanov AV (2017) Magnetic nanoparticles as mediators for nanomechanical actuation of biochemical systems by non-heating alternating magnetic field. J Nanopart Res xxxx

  • Golovin YI, Klyachko NL, Golovin DY, Efremova MV, Samodurov AA, Sokolski-Papkov M, Kabanov AV (2013a) A new approach to the control of biochemical reactions in a magnetic nanosuspension using a low-frequency magnetic field. Tech Phys Lett 39:240–243. doi:10.1134/S106378501303005X

    Article  Google Scholar 

  • Golovin YI, Klyachko NL, Sokolsky-Papkov M, Kabanov AV (2013b) Single-domain magnetic nanoparticles as force generators for the nanomechanical control of biochemical reactions by low frequency magnetic fields. Bulletin of the Russian Academy of Sciences. Physics 77(11):1350–1359. doi:10.3103/S1062873813110130

    Google Scholar 

  • Golovin YI, Morgunov RB (2001) New type of magnetoplastic effects in linear amorphous polymers. Phys Solid State 43:859–864. doi:10.1134/1.1371366

    Article  Google Scholar 

  • Golovin YI, Morgunov RB, Lopatin DV, Baskakov AA (1998) Reversible and irreversible magnetic field-induced changes in the plastic properties of NaCl crystals. Phys Solid State 40:1870–1872. doi:10.1134/1.1130675

    Article  Google Scholar 

  • Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV, Conolly SM (2012) X-Space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater 24(28):3870–3877. doi:10.1002/adma.201200221

    Article  Google Scholar 

  • Gordon RT, Hines JR, Gordon D (1979) Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. Med Hypotheses 5:83–102. doi:10.1016/0306-9877(79)90063-X

    Article  Google Scholar 

  • Grissom CB (1995) Magnetic field effects in biology: a survey of possible mechanisms with emphasis on radical-pair recombination. Chem Rev 95:3–24. doi:10.1021/cr00033a001

    Article  Google Scholar 

  • Grzyb T, Mrowczynska L, Szczeszak A, Sniadecki Z, Runowski M, Idzikowski B, Lis S (2015) Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides. J Nanopart Res 17:399. doi:10.1007/s11051-015-3191-2

    Article  Google Scholar 

  • Gubin SP (ed) (2009) Magnetic nanoparticles. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi:10.1002/9783527627561.ch1

    Google Scholar 

  • Guduru R, Liang P, Runowicz C, Nair M, Atluri V, Khizroev S (2013) Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells. Scientific Reports 3:2953. doi:10.1038/srep02953

    Article  Google Scholar 

  • Guidelines ICNIRP (2010) Guidelines for limiting exposure to time-varying electrical and magnetic fields (1 Hz to 100 kHz). Health Phys 99:818–836

    Google Scholar 

  • Gupta A, Kane RS, Borca-Tasciuc D-A (2010) Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles. J Appl Phys 108:064901(1)–064901(7). doi:10.1063/1.3485601

    Google Scholar 

  • Hammes-Schiffer S, Benkovic SJ (2006) Relating protein motion to catalysis. Annu Rev Biochem 75:519–541. doi:10.1146/annurev.biochem.75.103004.142800

    Article  Google Scholar 

  • Haney MJ, Suresh P, Zhao Y, Kanmogne GD, Kadiu I, Sokolsky-Papkov M, Klyachko NL, Mosley RI, Kabanov AV, Gendelman HE, Batrakova EV (2012) Blood-borne macrophage-neural cell interactions hitchhike endosome networks for cell-based nanozyme brain delivery. Nanomedicine (London) 7(8):815–833. doi:10.2217/nnm.11.156

    Article  Google Scholar 

  • Hanus J, Ullrich M, Dohnal J, Singh M, Stepanek F (2013) Remotely controlled diffusion from magnetic liposome microgels. Langmuir 29:4381–4387. doi:10.1021/la4000318

    Article  Google Scholar 

  • Hauser AK, Wydra RJ, Stocke NA, Anderson KW, Hilt JZ (2015) Magnetic nanoparticles and nanocomposites for remote controlled therapies. J of Control Release 219:76–94. doi:10.1016/j.jconrel.2015.09.039

    Article  Google Scholar 

  • Hayashi K, Nakamura M, Miki H, Ozaki S, Abe M, Matsumoto T, Sakamoto W, Yogo T, Ishimura K (2014) Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 4:834–843. doi:10.7150/thno.9199

    Article  Google Scholar 

  • He H, David A, Chertok B, Cole A, Lee K, Zhang J, Wang J, Huang Y, Yang VC (2013) Magnetic nanoparticles for tumor imaging and therapy: a so-called theranostic system. Pharm Res 30:2445–2458. doi:10.1007/s11095-013-0982-y

    Article  Google Scholar 

  • Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M, Hubner CG, Kern D (2007) Intrinsic motions along an enzymatic reaction trajectory. Nature 450:838–844. doi:10.1038/nature06410

    Article  Google Scholar 

  • Hergt R, Andrä W (2007) Magnetic hyperthermia and thermoablation. In: Andrä W, Nowak H (eds) Magnetism in medicine: a handbook, Second edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 550–570. doi:10.1002/9783527610174.ch4f

    Google Scholar 

  • Hergt R, Andrä W, d'Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 34(5):3745–3754

    Article  Google Scholar 

  • Hergt R, Dutz S (2007) Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J. of Magnetism and Magnetic Materials. 311:187–192. doi:10.1016/j.jmmm.2006.10.1156

    Article  Google Scholar 

  • Hergt R, Dutz S, Muller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18:S2919–S2934. doi:10.1088/0953-8984/18/38/S26

    Article  Google Scholar 

  • Herschlag D, Natarajan A (2013) Fundamental challenges in mechanistic enzymology: progress toward understanding the rate enhancements of enzymes. Biochemistry 52:2050–2067. doi:10.1021/bi4000113

    Article  Google Scholar 

  • Hervault A, Thanh NTK (2014) Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 6:11553–11573. doi:10.1039/c4nr03482a

    Article  Google Scholar 

  • Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Biasing reaction pathways with mechanical force. Nature 446:423–427. doi:10.1038/nature05681

    Article  Google Scholar 

  • Ho D, Sun X, Sun S (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44:875–882. doi:10.1021/ar200090c

    Article  Google Scholar 

  • Ho S, Mittal G (1996) Electroporation of cell membranes: a review. Crit Rev Biotechnol 16:349–362. doi:10.3109/07388559609147426

    Article  Google Scholar 

  • Hoare T, Santamaria J, Goya GF, Irusta S, Lin D, Lau S, Padera R, Langer R, Kohane DS (2009) A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett 9:3651–3657. doi:10.1021/nl9018935

    Article  Google Scholar 

  • Hoare T, Timko BP, Santamaria J, Goya GF, Irusta S, Lau S, Stefanescu CF, Lin D, Langer R, Kohane DS (2011) Magnetically triggered nanocomposite membranes: a versatile platform for triggered drug release. Nano Lett 11:1395–1400. doi:10.1021/nl200494t

    Article  Google Scholar 

  • Hore PJ (2012) Are biochemical reactions affected by weak magnetic fields? Proc Nat Acad Sci 109:1357–1358

    Article  Google Scholar 

  • Hu B, Dobson J, El Haj AJ (2014) Control of smooth muscle α-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation. Nanomedicine: Nanotechnology Biology and Medicine 10(1):45–55. doi:10.1016/j.nano.2013.06.014

    Google Scholar 

  • Hu B, El Haj AJ, Dobson J (2013) Receptor-targeted, magneto-mechanical stimulation of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Int J Mol Sci 14:19276–19293. doi:10.3390/ijms140919276

    Article  Google Scholar 

  • Hu SH, Gao X (2010) Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J Am Chem Soc 132:7234–7237. doi:10.1021/ja102489q

    Article  Google Scholar 

  • Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A (2010) Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol 5:602–606. doi:10.1038/nnano.2010.125

    Article  Google Scholar 

  • Huang H, Kamm RD, Lee RT (2004) Cell mechanics and mechanotransduction: pathways, probes, and physiology (invited review). Am J Physiol Cell Physiol 287:C1–C11. doi:10.1152/ajpcell.00559.2003

    Article  Google Scholar 

  • Hughes S, Dobson J, El Haj AJ (2007) Magnetic targeting of mechanosensors in bone cells for tissue engineering applications. J Biomech 40:S96–104. doi:10.1016/j.jbiomech.2007.03.002

    Article  Google Scholar 

  • Hughes S, El Haj AJ, Dobson J (2005) Magnetic micro- and nanoparticle mediated activation of mechanosensitive ion channels. Med Eng Phys 27:754–762. doi:10.1016/j.medengphy.2005.04.006

    Article  Google Scholar 

  • Hughes S, McBain S, Dobson J, El Haj AJ (2008) Selective activation of mechanosensitive ion channels using magnetic particles. J R Soc Interface 5:855–863. doi:10.1098/rsif.2007.1274

    Article  Google Scholar 

  • ICEMS Monograph (2010) Non-thermal effects and mechanisms of interaction between electromagnetic fields and living matter. Giuliani L, Soffritti M (eds). Eur. J. Oncol. Library 5

  • ICNIRP Guidelines (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys 74:494–522

    Google Scholar 

  • ICNIRP Statement (2004) Medical magnetic resonance (MR) procedure: protection of patients. Health Phys 87(2):197–216

    Article  Google Scholar 

  • Ikai A (2008) The world of nano-biomechanics. Mechanical imaging and measurement by atomic force microscopy. Elsevier, Amsterdam

    Google Scholar 

  • Ito A, Honda H, Kobayashi T (2006) Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol Immunother 55:320–328. doi:10.1007/s00262-005-0049-y

    Article  Google Scholar 

  • James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447. doi:10.1039/C1CS15171A

    Article  Google Scholar 

  • Jeyadevan B (2010) Present status and prospects of magnetite nanoparticles-based hyperthermia. Ceramic Soc Japan 118:391–401. doi:10.2109/jcersj2.118.391

    Article  Google Scholar 

  • Jian L, Shi Y, Liang J, Liu C, Xu G (2013) A novel targeted magnetic fluid hyperthermia system using HTS сoil array for tumor treatment. IEEE Trans Appl Supercond 23(3):4400104. doi:10.1109/TASC.2012.2230051

    Article  Google Scholar 

  • Jiang C, Davalos RV, Bischof JC (2015) A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans Biomed Eng 62:4–12. doi:10.1109/tbme.2014.2367543

    Article  Google Scholar 

  • Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R (1999) Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J of Magnetism and Magnetic Materials 194:185–196. doi:10.1016/s0304-8853(98)00558-7

    Article  Google Scholar 

  • Jordan A, Wust P, Fähling H, John W, Hinz A, Felix R (2009) Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperth 25:499–511. doi:10.3109/02656730903287790

    Article  Google Scholar 

  • Kamalapuram SK, Kanwar RK, Roy K, Chaudhary R, Sehgal R, Kanwar JR (2016) Theranostic multimodular potential of zinc-doped ferrite-saturated metal-binding protein-loaded novel nanocapsules in cancers. Int J of Nanomedicine 11:1349–1366. doi:10.2147/IJN.S95253

    Google Scholar 

  • Kanczler JM, Sura HS, Magnay J, Green D, Oreffo RO, Dobson JP, El Haj AJ (2010) Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng Part A 16:3241–3250. doi:10.1089/ten.TEA.2009.0638

    Article  Google Scholar 

  • Kato M (ed) (2006) Electromagnetics in biology. Springer

  • Kaushik A, Jayant RD, Nikkhah-Moshaie R, Bhardwaj V, Roy U, Huang Z, Ruiz A, Yndart A, Atluri V, El-Hage N, Khalili K, Nair M (2016) Magnetically guided central nervous system delivery and toxicity evaluation of magnetoelectric nanocarriers. Scientific Reports 6:25309. doi:10.1038/srep25309

    Article  Google Scholar 

  • Kazakov S (2016) Liposome-nanogel structures for future pharmaceutical applications: an updated review. Current Pharm Design 22(10):1391–1413. doi:10.2174/1381612822666160125114733#sthash.RJ81J3LK.dpuf

    Article  Google Scholar 

  • Keblinski P, Cahill DG, Bodapati A, Sullivan CR, Taton TA (2006) Limits of localized heating by electromagnetically excited nanoparticles. J Appl Phys 100:054305. doi:10.1063/1.2335783

    Article  Google Scholar 

  • Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903. doi:10.1021/bc200151q

    Article  Google Scholar 

  • Khan S, Sheetz MP (1997) Force effects on biochemical kinetics. Annu Rev Biochem 66:785–805. doi:10.1146/annurev.biochem.66.1.785

    Article  Google Scholar 

  • Kim DH, Karavayev P, Rozhkova EA, Pearson J, Yefremenko V, Bader SD, Novosad V (2011) Mechanoresponsive system based on sub-micron chitosan-functionalized ferromagnetic disks. J Mater Chem 21:8422–8426. doi:10.1039/C1JM10272A

    Article  Google Scholar 

  • Kim DH, Rozhkova EA, Ulasov IV, Bader SD, Rajh T, Lesniak MS, Novosad V (2010) Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat Mater 9:165–171. doi:10.1038/nmat2591

    Article  Google Scholar 

  • Kim DH, Vitol EA, Liu J, Balasubramanian S, Gosztola DJ, Cohen EE, Novosad V, Rozhkova EA (2013a) Stimuli-responsive magnetic nanomicelles as multifunctional heat and cargo delivery vehicles. Langmuir 29:7425–7432. doi:10.1021/la3044158

    Article  Google Scholar 

  • Kim TH, Lee S, Chen X (2013b) Nanotheranostics for personalized medicine. Expert Rev Mol Diagn 13:257–269. doi:10.1586/erm.13.15

    Article  Google Scholar 

  • Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y (2003) Magnetic control of ferroelectric polarization. Nature 426:55–58. doi:10.1038/nature02018

    Article  Google Scholar 

  • Klibanov AM (1979) Enzyme stabilization by immobilization. Anal Biochem 93:1–25

    Article  Google Scholar 

  • Klibanov AM, Samokhin GP, Martinek K, Berezin IV (1976) Enzymatic mechanochemistry: a new approach to studying the mechanism of enzyme action. Biochim. Biophys Acta 438:1–12

    Google Scholar 

  • Klyachko NL, Sokolsky-Papkov M, Pothayee N, Efremova MV, Gulin DA, Pothayee N, Kuznetsov AA, Majouga AG, Riffle JS, Golovin YI, Kabanov AV (2012) Changing the enzyme reaction rate in magnetic nanosuspensions by a non-heating magnetic field. Angew Chem Int Edit 51:12016–12019. doi:10.1002/anie.201205905

    Article  Google Scholar 

  • Knopp T, Buzug TM (2012) Magnetic particle imaging. An introduction to imaging principles and scanner instrumentation. Springer

  • Kobayashi H, Ueda K, Tomitaka A, Yamada T, Takemura Y (2011) Self-heating property of magnetite nanoparticles dispersed in solution. IEEE Trans Magn 47:4151–4154. doi:10.1109/TMAG.2011.2157472

    Article  Google Scholar 

  • Kozissnik B, Bohorquez AC, Dobson J, Rinaldi C (2013) Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int J Hyperth 29:706–714. doi:10.3109/02656736.2013.837200

    Article  Google Scholar 

  • Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T (2015) Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 115(19):10907–10937. doi:10.1021/cr500314d

    Article  Google Scholar 

  • Lakshmanan S, Gupta GK, Avci P, Chandran R, Sadasivam M, Jorge AES, Hamblin MR (2014) Physical energy for drug delivery; poration, concentration and activation. Adv Drug Deliv Rev 71:98–114. doi:10.1016/j.addr.2013.05.010

    Article  Google Scholar 

  • Landi GT (2014) Role of dipolar interaction in magnetic hyperthermia. Phys. Rev. B 89, 014403-(1–6). doi: 10.1103/PhysRevB.89.014403

  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interf Sci 166:8–23. doi:10.1016/j.cis.2011.04.003

    Article  Google Scholar 

  • Lee CK, Wang YM, Huang LS, Lin S (2007) Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein–ligand interaction. Micron 38:446–461. doi:10.1016/j.micron.2006.06.014

    Article  Google Scholar 

  • Lee HC, Hong MN, Jung SH, Kim BC, Suh YJ, Ko YG, Lee YS, Lee BY, Cho YG, Myung SH, Lee JS (2015a) Effect of extremely low frequency magnetic fields on cell proliferation and gene expression. Bioelectromagnetics 36:506–516. doi:10.1002/bem.21932

    Article  Google Scholar 

  • Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J (2015b) Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115:10637–10689. doi:10.1021/acs.chemrev.5b00112

    Article  Google Scholar 

  • Leulmi S, Chauchet X, Morcrette M, Ortiz G, Joisten H, Sabon P, Livache T, Hou Y, Carrière M, Lequiena S, Dieny B (2015) Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane. Nanoscale 7:15904–15914. doi:10.1039/c5nr03518j

    Article  Google Scholar 

  • Liao SH, Liu CH, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FH, Wu KCW (2015) Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. Int J Nanomedicine 10:3315–3328. doi:10.2147/IJN.S68719

    Article  Google Scholar 

  • Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115(1):327–394. doi:10.1021/cr300213b

    Article  Google Scholar 

  • Lin X, Quoc BN, Ulbricht M (2016) Magnetoresponsive polyethersulfone-based iron oxide cum hydrogel mixed matrix composite membranes for switchable molecular sieving. ACS Appl Mater Interfaces 8(42):29001–29014. doi:10.1021/acsami.6b09369

    Article  Google Scholar 

  • Lin Y, Cai N, Zhai J, Liu G, Nan C-W (2005) Giant magnetoelectric effect in multiferroic laminated composites. Phys Rev B 72:012405. doi:10.1103/PhysRevB.72.012405

    Article  Google Scholar 

  • Ling-Yun Z, Jia-Yi L, Wei-Wei O, Dan-Ye L, Li L, Li-Ya L, Jin-Tian T (2013) Magnetic-mediated hyperthermia for cancer treatment: research progress and clinical trials. Chin Phys B 22:108104–1–108104-14. doi:10.1088/1674-1056/22/10/108104

    Google Scholar 

  • Liu C, Hou Y, Gao M (2014) Are rare-earth nanoparticles suitable for in vivo applications? Adv Mater 26:6922–6932. doi:10.1002/adma.201305535

    Article  Google Scholar 

  • Lu A, Salabas EL, Ferdi Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244. doi:10.1002/anie.200602866

    Article  Google Scholar 

  • Lu Z, Prouty MD, Guo Z, Golub VO, Kumar CSSR, Lvov YM (2005) Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. Langmuir 21:2042–2050. doi:10.1021/la047629q

    Article  Google Scholar 

  • Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338. doi:10.1021/cr2002596

    Article  Google Scholar 

  • Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103:317–324. doi:10.1007/s11060-010-0389-0

    Article  Google Scholar 

  • Majouga A, Sokolsky-Papkov M, Kuznetsov A, Lebedev D, Efremova M, Beloglazkina E, Rudakovskaya P, Veselov M, Zyka N, Golovin Y, Klyachko N, Kabanov A (2015) Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: synthesis, purification and control of enzyme function by low-frequency magnetic field. Colloids Surf B: Biointerfaces 125:104–109. doi:10.1016/j.colsurfb.2014.11.012

    Article  Google Scholar 

  • Malvindi MA, De Matteis V, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A, Cingolani R, Pompa PP (2014) Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One 9:e85835. doi:10.1371/journal.pone.0085835

    Article  Google Scholar 

  • Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, Ingber DE (2008) Nanomagnetic actuation of receptor-mediated signal transduction. Nat Nanotechnol 3:36–40. doi:10.1038/nnano.2007.418

    Article  Google Scholar 

  • Martinez-Boubeta C, Simeonidis K, Serantes D, Conde-Leborán I, Kazakis I, Stefanou G, Peña L, Galceran R, Balcells L, Monty C, Baldomir D, Mitrakas M, Angelakeris M (2012) Adjustable hyperthermia response of self-assembled ferromagnetic Fe-MgO core–shell nanoparticles by tuning dipole–dipole interactions. Adv Funct Mater 22:3737–3744. doi:10.1002/adfm.201200307

    Article  Google Scholar 

  • Master AM, Williams PN, Pothayee Nik, Pothayee Nip, Zhang R, Vishwasrao HM, Golovin YI, Riffle JS, Sokolsky M, Kabanov AV (2016) Remote actuation of magnetic nanoparticles for cancer cell selective treatment through cytoskeletal disruption. Scientific Reports 6:33560. doi:10.1038/srep33560

  • McCarthy JR (2010) Multifunctional agents for concurrent imaging and therapy in cardiovascular disease. Adv Drug Deliv Rev 62:1023–1030. doi:10.1016/j.addr.2010.07.004

    Article  Google Scholar 

  • Milyaev VА, Bingi VN (2006) On the physical nature of magnetobiological effects. Quantum Electronics 36(8):691–701. doi:10.1070/QE2006v036n08ABEH013183

    Article  Google Scholar 

  • Min W, English BP, Luo J, Cherayil BJ, Kou SC, Xie XS (2005) Fluctuating enzymes: lessons from single-molecule studies. Acc Chem Res 38:923–931. doi:10.1021/ar040133f

    Article  Google Scholar 

  • Min Y, Caster JM, Eblan MJ, Wang AZ (2015) Clinical translation of nanomedicine. Chem Rev 115(19):11147–11190. doi:10.1021/acs.chemrev.5b00116

    Article  Google Scholar 

  • Mizuki T, Watanabe N, Nagaoka Y, Fukushima T, Morimoto H, Usami R, Maekawa T (2010) Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field. Biochem Biophys Res Commun 393:779–782. doi:10.1016/j.bbrc.2010.02.081

    Article  Google Scholar 

  • Mohapatra J, Nigam S, Gupta J, Mitra A, Aslam M, Bahadur D (2015) Enhancement of magnetic heating efficiency in size controlled MFe2O4 (M = Mn, Fe, Co and Ni) nanoassemblies. RSC Adv 5:14311–14321. doi:10.1039/c4ra13079k

    Article  Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175. doi:10.1039/B402025A

    Article  Google Scholar 

  • Muthu MS, Leong DT, Mei L, Feng SS (2014) Nanotheranostics—application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4(6):660–677. doi:10.7150/thno.8698

    Article  Google Scholar 

  • Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N (2008) Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad Sci U S A 105:6626–6631. doi:10.1073/pnas.0711704105

    Article  Google Scholar 

  • Nacev A, Kim SH, Rodriguez-Canales J, Tangrea MA, Shapiro B, Emmert-Buck MR (2011) A dynamic magnetic shift method to increase nanoparticle concentration in cancer metastases: a feasibility study using simulations on autopsy specimens. Int J of Nanomedicine 6:2907–2923. doi:10.2147/IJN.S23724

    Article  Google Scholar 

  • Nacev A, Probst R, Kim SH, Komaee A, Sarvar A, Lee R, Depireux D, Emmert-Buck M, Shapiro B (2012) Towards control of magnetic fluids in patients. Directing therapeutic nanoparticles to desease location. IEEE Control Syst Mag 32(3):32–74. doi:10.1109/MCS.2012.2189052

    Article  Google Scholar 

  • Nagaich U (2015) Theranostic nanomedicine: potential therapeutic epitome. J Adv Pharm Technol Res 6(1):1. doi:10.4103/2231-4040.150354

    Article  Google Scholar 

  • Nagakura S, Hayashi H, Azumi T (1998) Dynamic spin chemistry: magnetic controls and spin dynamics of chemical reactions. Wiley, New-York

    Google Scholar 

  • Nair M, Guduru R, Liang P, Hong J, Sagar V, Khizroev S (2013) Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nat Commun 4:1707. doi:10.1038/ncomms2717

    Article  Google Scholar 

  • Najafishirtari S, Kokumai TM, Marras S, Destro P, Prato M, Scarpellini A, Brescia R, Lak A, Pellegrino T, Zanchet D, Manna L, Colombo M (2016) Dumbbell-like Au0.5Cu0.5@Fe3O4 nanocrystals: synthesis, characterization and catalytic activity in CO oxidation. ACS Appl Mater Interfaces 8(42):28624–28632. doi:10.1021/acsami.6b09813

    Article  Google Scholar 

  • Nappini S, Bombelli FB, Bonini M, Norden B, Baglioni P (2010) Magnetoliposomes for controlled drug release in the presence of low-frequency magnetic field. Soft Matter 6:154–162. doi:10.1039/B915651H

    Article  Google Scholar 

  • Nappini S, Bonini M, Bombelli FB, Pineider F, Sangregorio C, Baglioni P, Norden B (2011a) Controlled drug release under a low frequency magnetic field: effect of the citrate coating on magnetoliposomes stability. Soft Matter 7:1025–1037. doi:10.1039/C0SM00789G

    Article  Google Scholar 

  • Nappini S, Bonini M, Ridi F, Baglioni P (2011b) Structure and permeability of magnetoliposomes loaded with hydrophobic magnetic nanoparticles in the presence of a low frequency magnetic field. Soft Matter 7:4801–4811. doi:10.1039/C0SM01264E

    Article  Google Scholar 

  • National Research Council (US) (1997) Possible health effects of exposure to residential electric and magnetic fields. National Academy, Washington (DC)

    Google Scholar 

  • Navarro EA, Gomez-Perretta C, Montes F (2016) Low intensity magnetic field influences short-term memory: a study in a group of healthy students. Bioelectromagnetics 37:37–48. doi:10.1002/bem.21944

    Article  Google Scholar 

  • Neshasteh-Riz A, Rahdani R, Mostaar A (2014) Evaluation of the combined effects of hyperthermia, cobalt-60 gamma rays and IUdR on cultured glioblastoma spheroid cells and dosimetry using TLD-100. Cell Journal 16:335–342

    Google Scholar 

  • Noy A (2008) Handbook of molecular force spectroscopy. Springer, New York

    Book  Google Scholar 

  • NTK T (ed) (2012) Magnetic nanoparticles. From fabrication to clinical application. CRC, Boca Raton

    Google Scholar 

  • Obaidat IM, Bashar IB, Haik Y (2015) Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5:63–89. doi:10.3390/nano5010063

    Article  Google Scholar 

  • Oberhauser AF (2013) Single-molecule studies of proteins. Springer, New York

    Book  Google Scholar 

  • Panagiotopoulos N, Duschka RL, Ahlborg M, Bringout G, Debbeler C, Graeser M, Kaethner C, Lüdtke-Buzug K, Medimagh H, Stelzner J, Buzug TM, Barkhausen J, Vogt FM, Haegele J (2015) Magnetic particle imaging: current developments and future directions. Int J Nanomedicine 10:3097–3114. doi:10.2147/IJN.S70488

    Article  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181. doi:10.1088/0022-3727/36/13/201

    Article  Google Scholar 

  • Pankhurst QA, Thanh NTK, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42:224001. doi:10.1088/0022-3727/42/22/224001

    Article  Google Scholar 

  • Park JH, Maltzahn G, Zhang L, Bhatia SN, Sailor MJ (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20:1630–1635. doi:10.1002/adma200800004

    Article  Google Scholar 

  • Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115(19):10938–10966. doi:10.1021/acs.chemrev.5b00046

    Article  Google Scholar 

  • Peiris PM, Schmidt E, Calabrese M, Karathanasis E (2011) Assembly of linear nano-chains from iron oxide nanospheres with asymmetric surface chemistry. PLoS One 6(1): e15927-(1–9). doi:10.1371/journal.pone.0015927

  • Peiris PM, Bauer L, Toy R, Tran E, Pansky J, Doolittle E, Schmidt E, Hayden E, Mayer A, Keri RA, Griswold MA, Karathanasis K (2012) Enhanced delivery of chemotherapy to tumors using a multicomponent nanochain with radio-frequency-tunable drug release. ACS Nano 6(5):4157–4168. doi:10.1021/nn300652p

    Article  Google Scholar 

  • Perigo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F, Teran FJ (2015) Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews 2:041302. doi:10.1063/1.4935688

    Article  Google Scholar 

  • Pilla AA (2013) Nonthermal electromagnetic fields: From first messenger to therapeutic applications. Electromagnetic Biology and Medicine 32:123–136

    Article  Google Scholar 

  • Polk C, Postow E (eds) (1995) Handbook of biological effects of electromagnetic fields. CRC, Boca Raton

    Google Scholar 

  • Polo-Corrales L, Rinaldi C (2012) Monitoring iron oxide nanoparticle surface temperature in an alternating magnetic field using thermoresponsive fluorescent polymers. J Applied Phys 111:07B334. doi:10.1063/1.3680532

    Article  Google Scholar 

  • Popa I, Kosuri P, Alegre-Cebollada J, Garcia-Manyes S, Fernandez JM (2013) Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy. Nat Protoc 8:1261–1276. doi:10.1038/nprot.2013.056

    Article  Google Scholar 

  • Ptitsyna NG, Villoresi G, Dorman LI, Iucci N, Tyasto MI (1998) Natural and man-made low-frequency magnetic fields as a potential health hazard. Physics Uspekhi 41(7):687–709. doi:10.1070/PU1998v041n07ABEH000419

    Article  Google Scholar 

  • Puchner EM, Gaub HE (2012) Single-molecule mechanoenzymatics. Annu Rev Biophys 41:497–518. doi:10.1146/annurev-biophys-050511-102301

    Article  Google Scholar 

  • Pyatakov AP, Zvezdin AK (2012) Magnetoelectric and multiferroic media. Physics-Uspekhi 55:557–581. doi:10.3367/UFNe.0182.201206b.0593

    Article  Google Scholar 

  • Qu Y, Li J, Ren J, Leng J, Linc C, Shi D (2014) Enhanced synergism of thermo-chemotherapy by combining highly efficient magnetic hyperthermia with magnetothermally-facilitated drug release. Nanoscale. 6:12408–12413. doi:10.1039/c4nr03384a

    Article  Google Scholar 

  • Rabin Y (2002) Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? Int J Hyperth 18:194–202. doi:10.1080/02656730110116713

    Article  Google Scholar 

  • Rafique MY, Pan L, Javed Q, Iqbal MZ, Yang L (2012) Influence of NaBH4 on the size, composition, and magnetic properties of CoFe2O4 nanoparticles synthesized by hydrothermal method. J Nanopart Res 14:1–12. doi:10.1007/s11051-012-1189-6

    Article  Google Scholar 

  • Reddy L, Areas JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878. doi:10.1021/cr300068p

    Article  Google Scholar 

  • Reimhult E, Amstad E (2014) Stabilization and characterization of iron oxide superparamagnetic core-shell nanoparticles for biomedical applications. In: Bhushan B, Luo D, Schricker SR, Sigmund W, Zauscher S (eds) Handbook of nanomaterials properties. Springer, Berlin, pp 355–387

    Chapter  Google Scholar 

  • Reiner JE, Balijepalli A, Robertson JWF, Campbell J, Suehle J, Kasianowicz JJ (2012) Disease detection and management via single nanopore-based sensors. Chem Rev 112:6431–6451. doi:10.1021/cr300381m

    Article  Google Scholar 

  • Rios C, Longo J, Zahouani S, Garnier T, Vogt C, Reisch A, Senger B, Boulmedais F, Hemmerle J, Benmlih K, Frisch B, Schaaf P, Jierry L, Lavalle P (2015) A new biomimetic route to engineer enzymatically active mechano-responsive materials. Chem Commun 51:5622–5625. doi:10.1039/C5CC00329F

    Article  Google Scholar 

  • Rodgers CT (2009) Magnetic field effects in chemical systems. Pure Appl Chem 81:19–43. doi:10.1351/PAC-CON-08-10-18

    Article  Google Scholar 

  • Rojas-Pereza A, Diaz-Diestra D, Frias-Flores CB, Beltran-Huarac J, Dasc KC, Weiner BR, Morell G, Diaz-Vazquez LM (2015a) Catalytic effect of ultrananocrystalline Fe3O4 on algal bio-crude production via HTL process. Nanoscale 7:17664–17671. doi:10.1039/C5NR04404A

    Article  Google Scholar 

  • Rosen BM, Percec V (2007) Mechanochemistry: a reaction to stress. Nature 446:381–382. doi:10.1038/446381a

    Article  Google Scholar 

  • Rozhkova EA, Novosad V, Kim DH, Pearson J, Divan R, Rajh T, Bader SD (2009) Ferromagnetic microdisks as carriers for biomedical applications. J Appl Phys 105:07B306. doi:10.1063/1.3061685

    Article  Google Scholar 

  • Rozhkova EA, Ulasov IV, Kim DH, Dimitrijevic NM, Novosad V, Bader SD, Lesniak MS, Rajh T (2011) Multifunctional nano-bio materials within cellular machinery. Int J Nanosci 10:899. doi:10.1142/S0219581X11009350

    Article  Google Scholar 

  • Runowski M, Dabrowska K, Grzyb T, Miernikiewicz P, Lis S (2013) Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity. J Nanopart Res 15:2068. doi:10.1007/s11051-013-2068-5

    Article  Google Scholar 

  • Ruta S. R, Chantrell R, Hovorka O (2015) Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles. Sientific Reports 5: 9090-(1–7). doi: 10.1038/srep09090

  • Ryu JH, Lee S, Son S, Kim SH, Leary JF, Choi K, Kwon IC (2014) Theranostic nanoparticles for future personalized medicine. J Control Release 190:477–484. doi:10.1016/j.jconrel.2014.04.027

    Article  Google Scholar 

  • Salikhov KM, Molin YN, Sagdeev RZ, Buchachenko AL (1984) Spin polarization and magnetic effects in radical reaction. Elsevier, Amsterdam

    Google Scholar 

  • Salunkhe AB, Khot VM, Pawar SH (2014) Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr Top Med Chem 14:572–594. doi:10.2174/1568026614666140118203550

    Article  Google Scholar 

  • Sanson C, Diou O, Thevenot J, Ibarboure E, Soum A, Brulet A, Miraux S, Thiaudiere E, Tan S, Brisson A, Dupuis V, Sandre O, Lecommandoux O (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5:1122–1140. doi:10.1021/nn102762f

    Article  Google Scholar 

  • Santos LJ, Reis RL, Gomes ME (2015) Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Review Trends in Biotechnology 33(8):471–479. doi:10.1016/j.tibtech.2015.06.006

    Article  Google Scholar 

  • Saville SL, Qi B, Baker J, Stone R, Camley RE, Livesey KL, Ye L, Crawford TM, Mefford TO (2014) The formation of linear aggregates in magnetic hyperthermia: Implications on specific absorption rate and magnetic anisotropy. J of Colloid and Interface Science 424:141–151 doi.org/10.1016/j.jcis.2014.03.007

    Article  Google Scholar 

  • Schleich N, Danhier F, Préat V (2014a) Iron oxide-loaded nanotheranostics: major obstacles to in vivo studies and clinical translation. J Control Release 198:35–54. doi:10.1016/j.jconrel.2014.11.024

    Article  Google Scholar 

  • Schleich N, Po C, Jacobs D, Ucakar B, Gallez B, Danhier F, Préat V (2014b) Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 194:82–91. doi:10.1016/j.jconrel.2014.07.059

    Article  Google Scholar 

  • Seeram E (2015) Computer tomography: principles, clinical application, and quality control. 4th Ed. Elsevier

  • Semkina AS, Abakumov MA, Abakumov AM, Nukolova NV, Chekhonin VP (2016) Relationship between the size of magnetic nanoparticles and efficiency of MRT imaging of cerebral glioma in rats. Bull Exp Biol Med 161(2):292–295. doi:10.1007/s10517-016-3398-y

    Article  Google Scholar 

  • Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Morales MP, Baldomir D, Martinez-Boubeta C (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934. doi:10.1021/jp410717m

    Article  Google Scholar 

  • Shapiro B, Kulkarni S, Nacev A, Muro S, Stepanov PY, Weinberg IN (2015) Open challenges in magnetic drug targeting. WIREs Nanomed Nanobiotechnol 7:446–457. doi:10.1002/wnan.1311

    Article  Google Scholar 

  • Sharifabad ME, Mercer T, Sen T (2015) The fabrication and characterization of stable core-shell superparamagnetic nanocomposites for potential application in drug delivery. J Appl Phys 117:17D139. doi:10.1063/1.4917264

    Article  Google Scholar 

  • Sharma VK, Alipour A, Soran-Erdem Z, Aykut ZG, Demir HV (2015) Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T1-T2 MRI contrast agents. Nanoscale 7:10519–10526. doi:10.1039/c5nr00752f

    Article  Google Scholar 

  • Shen S, Gu T, Mao D, Xiao X, Yuan P, Yu M, Xia L, Ji Q, Meng L, Song W, Yu C, Lu G (2012) Synthesis of nonspherical mesoporous silica ellipsoids with tunable aspect ratios for magnetic assisted assembly and gene delivery. Chem Mater 24:230–235. doi:10.1021/cm203434k

    Article  Google Scholar 

  • Singh S, Kapoor N (2014) Health implications of electromagnetic fields, mechanisms of action, and research needs. Advances in Biology 2014: Article ID 198609. doi: 10.1155/2014/198609

  • Steiner UE, Ulrich T (1989) Magnetic field effect in chemical kinetics and related phenomena. Chem Rev 89(1):51–147. doi:10.1021/cr00091a003

    Article  Google Scholar 

  • Strehl C, Gaber T, Maurizi L, Hahne M, Rauch R, Hoffm P, Häupl T, Hofmann-Amtenbrink M, Poole AR, Hofmann H, Buttgereit F (2015) Effects of PVA coated nanoparticles on human immune cells. Int J Nanomedicine 10:3429–3445. doi:10.2147/IJN.S75936

    Article  Google Scholar 

  • Strehl C, Maurizi L, Gaber T, Hoff P, Broschard T, Poole AR, Hofmann H, Buttgereit F (2016) Modification of the surface of superparamagnetic iron oxide nanoparticles to enable their safe application in humans. Int J Nanomedicine 11:5883–5896. doi:10.2147/IJN.S110579

    Article  Google Scholar 

  • Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–438. doi:10.1016/j.actbio.2007.04.002

    Article  Google Scholar 

  • Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R (2011) Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 71(15):5075–5080

    Article  Google Scholar 

  • Thakor AS, Gambhir SS (2013) Nanooncology: the future of cancer diagnosis and therapy. CA-Cancer J Clin 63(6):395–418. doi:10.3322/caac.21199

    Article  Google Scholar 

  • Theґvenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42:7099. doi:10.1039/c3cs60058k

    Article  Google Scholar 

  • Thomas CR, Ferris DP, Lee JH, Choi E, Cho MH, Kim ES, Stoddart JF, Shin JS, Cheon J, Zink JI (2010) Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 132:10623–10625. doi:10.1021/ja1022267

    Article  Google Scholar 

  • Thorat ND, Bohara RA, Malgras V, Tofail SAM, Ahamad T, Alshehri SM, Wu KCW, Yamauchi Y (2016a) Multimodal superparamagnetic nanoparticles with unusually enhanced specific absorption rate for synergetic cancer therapeutics and magnetic resonance imaging. ACS Appl Mater Interfaces 8(23):14656–14664. doi:10.1021/acsami.6b02616

    Article  Google Scholar 

  • Thorat ND, Bohara RA, Tofail SAM, Alothman ZA, Shiddiky MJA, Hossain MSA, Yamauchi Y, Wu KCW (2016b) Superparamagnetic gadolinium ferrite nanoparticles with controllable curie temperature—cancer theranostics for MR-imaging-guided magneto-chemotherapy. Eur J Inorg Chem 2016(28):4586–4597. doi:10.1002/ejic.201600706

    Article  Google Scholar 

  • Thorat ND, Shinde KP, Pawar SH, Barick KC, Bettyc CA, Ningthoujamc RS (2012) Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application. Dalton Trans 41:3060–3071. doi:10.1039/c2dt11835a

    Article  Google Scholar 

  • Thorat ND, Lemine OM, Bohara RA, Omri K, Mir LE, Tofail SAM (2016c) Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications. Phys Chem Chem Phys 18:21331–21339. doi:10.1039/C6CP03430F

    Article  Google Scholar 

  • Thorat ND, Otari SV, Patil RM, Bohara RA, Yadav HM, Koli VB, Chaurasia AK, Ningthoujam RS (2014) Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells. Dalton Trans 43(46):17343–17351. doi:10.1039/C4DT02293A

    Article  Google Scholar 

  • Tomitsch J, Dechant E (2015) Exposure to electromagnetic fields in households—trends from 2006 to 2012. Bioelectromagnetics 36:77–85. doi:10.1002/bem.21887

    Article  Google Scholar 

  • Toparli С, Ebin B, Gürmen S (2017) Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles. J Magn Magn Mater 423:133–139. doi:10.1016/j.jmmm.2016.09.005

    Article  Google Scholar 

  • Torres-Lugo M, Rinaldi C (2013) Thermal potentiation of chemotherapy by magnetic nanoparticles. Nanomedicine 8:1689–1707. doi:10.2217/nnm.13.146

    Article  Google Scholar 

  • Uchiyama S, Matsumura Y, de Silva AP, Iwai K (2003) Fluorescent molecular thermometers based on polymers showing temperature induced phase transitions and labeled with polarity-responsive benzofurazans. Anal Chem 75:5926–5935. doi:10.1021/ac0346914

    Article  Google Scholar 

  • Urries I, Muñoz C, Gomez L, Marquina C, Sebastian V, Arruebo M, Santamaria J (2012) Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications. Nanoscale 6:9230–9240. doi:10.1039/c4nr01588f

    Article  Google Scholar 

  • Vinhas R, Cordeiro M, Carlos FF, Mendo S, Fernandes AR, Figueiredo S, Baptista PV (2015) Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial. Nanobiosensors in Disease Diagnosis 4:11–23. doi:10.2147/ndd.s60285

    Google Scholar 

  • Vitol EA, Novosad V, Rozhkova EA (2012b) Microfabricated magnetic structures for future medicine: from sensors to cell actuators. Nanomedicine (Lond) 7:1611–1624. doi:10.2217/nnm.12.133

    Article  Google Scholar 

  • Vitol EA, Novosad V, Rozhkova EA (2012c) Multifunctional ferromagnetic disks for modulating cell function. IEEE T Trans Magn 48:3269–3274. doi:10.1109/TMAG.2012.2198209

    Article  Google Scholar 

  • Vitol EA, Novosad V, Rozhkova EA (2012a) Microfabricated magnetic structures for future medicine: from sensors to cell actuators. Nanomedicine (London) 7:1611–1624. doi:10.2217/nnm.12.133

    Article  Google Scholar 

  • Vogel P, Rückert MA, Klauer P, Kullmann WH, Jakob PM, Behr VC (2014) Traveling wave magnetic particle imaging. IEEE T Med Imaging 33(2):400–407. doi:10.1109/TMI.2013.2285472

    Article  Google Scholar 

  • Walther W, Stein U (2009) Heat-responsive gene expression for gene therapy. Adv Drug Deliv Rev 61:641–649. doi:10.1016/j.addr.2009.02.009

    Article  Google Scholar 

  • Wang B, Bienvenu C, Mendez-Garza J, Madeira PA, Vierling P, Di Giorgio C, Bossis G (2013) Necrosis of HepG2 cancer cells induced by the vibration of magnetic particles. J of Magnetism and Magnetic Materials 344:193–201. doi:10.1016/j.jmmm.2013.05.043

    Article  Google Scholar 

  • Wang GW (2013) Mechanochemical organic synthesis. Chem Soc Rev 42:7668–7700. doi:10.1039/C3CS35526H

    Article  Google Scholar 

  • Wang L, Chuang MC, Ho JA (2012) Nanotheranostics—a review of recent publications. Int J Nanomedicine 7:4679–4695. doi:10.2147/ijn.s33065

    Google Scholar 

  • Warner S (2004) Diagnostics + therapy = theranostics. Scientist 18(16):38–39

    Google Scholar 

  • Warshel A, Bora RP (2016) Perspective: defining and quantifying the role of dynamics in enzyme catalysis. J Chem Phys 144(17):180901. doi:10.1063/1.4947037

    Article  Google Scholar 

  • Wen J-D, Lancaster L, Hodges C, Zeri A, Yoshimura SH, Noller HF, Bustamante C, Tinoco I (2008) Following translation by single ribosomes one codon at a time. Nature 452:598–604. doi:10.1038/nature06716

    Article  Google Scholar 

  • Westbrook C (2014) Handbook of MRI technique, 4th Edition. Wiley-Blackwell

  • Wiggins KM, Brantley JN, Bielawski CW (2012) Polymer mechanochemistry: force enabled transformations. ACS Macro Lett 1:623–626. doi:10.1021/mz300167y

    Article  Google Scholar 

  • Wilhelm C, Gazeau F (2009) Magnetic nanoparticles: internal probes and heaters within living cells. J Magn Magn Mater 321:671–674. doi:10.1016/j.jmmm.2008.11.022

    Article  Google Scholar 

  • Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501. doi:10.1088/1468-6996/16/2/023501

    Article  Google Scholar 

  • Wydra RJ, Oliver CE, Anderson KW, Dziubla TD, Hilt JZ (2015) Accelerated generation of free radicals by iron oxide nanoparticles in the presence of an alternating magnetic field. RSC Adv 5:18888–18893. doi:10.1039/c4ra13564d

    Article  Google Scholar 

  • Xing Y, Zhao J, Conti PS, Chen K (2014) Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4(3):290–306. doi:10.7150/thno.7341

    Article  Google Scholar 

  • Xu Y, Mahmood M, Li Z, Dervishi E, Trigwell S, Zharov VP, Ali N, Saini V, Biris AR, Lupu D, Boldor D, Biris AS (2008) Cobalt nanoparticles coated with graphitic shells as localized radio frequency absorbers for cancer therapy. Nanotechnology 19:43102. doi:10.1088/0957-4484/19/43/435102

    Google Scholar 

  • Yanagida T, Ishii Y (2009) Single molecule dynamics in life science. Wiley-VCH, Weinheim

    Google Scholar 

  • Yarmush ML, Golberg A, Sersa G, Kotnik T, Miklavcic D (2014) Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 16:295–320. doi:10.1146/annurev-bioeng-071813-104622

    Article  Google Scholar 

  • Yin PT, Shah BP, Lee K-B (2014) Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells. Small 10:4106–4112. doi:10.1002/smll.20140096

    Google Scholar 

  • Yoo D, Lee JH, Shin TH, Cheon J (2011) Theranostic magnetic nanoparticles. Acc Chem Res 44:863–874. doi:10.1021/ar200085c

    Article  Google Scholar 

  • Yue K, Guduru R, Hong J, Liang P, Nair M, Khizroev S (2012) Magneto-electric nano-particles for non-invasive brain stimulation. PLoS One 7:e44040. doi:10.1371/journal.pone.0044040

    Article  Google Scholar 

  • Yun YH, Lee BK, Park K (2015) Controlled drug delivery: historical perspective for the next generation. J Control Release 219:2–7. doi:10.1016/j.jconrel.2015.10.005

    Article  Google Scholar 

  • Zhang E, Kircher MF, Koch XM, Eliasson L, Goldberg SN, Renström E (2014) Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation. ACS Nano 8(4):3192–3201. doi:10.1021/nn406302j

    Article  Google Scholar 

  • Zhao Q, Wang L, Cheng R, Mao L, Arnold RD, Howerth EW, Chen ZG, Platt S (2012) Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2:113–121. doi:10.7150/thno.3854

    Article  Google Scholar 

  • Zong Y, Xin H, Zhang J, Lia X, Feng, Deng X, Sun Y, Zheng X (2017) One-pot, template- and surfactant-free solvothermal synthesis of highcrystalline Fe3O4 nanostructures with adjustable morphologies and high magnetization. J Magn Magn Mater 423:321–326. doi:10.1016/j.jmmm.2016.09.132

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation (project no. 14-13-00731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri I. Golovin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Based on the presentation at the 7th International Conference “Nanoparticles, nanostructured coatings and microcontainers: technology, properties, applications”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, Y.I., Klyachko, N.L., Majouga, A.G. et al. Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine. J Nanopart Res 19, 63 (2017). https://doi.org/10.1007/s11051-017-3746-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3746-5

Keywords

Navigation