Skip to main content
Log in

Synthesis, spectroscopic and luminescent properties of nanosized powders of yttrium phosphates doped with Er3+ ions

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Here, we report synthesis of pure crystalline nanopowders of yttrium orthophosphate Y0.95Er0.05PO4 with xenotime-type structure and hydrate of yttrium orthophosphate Y0.95Er0.05PO4⋅0.8H2O with rhabdophane-type structure using microwave-hydrothermal treatment of freshly precipitated gels. To establish phase composition of the synthesized nanopowders, we have carried out XRD analysis. Also, we have investigated their morphology by means of TEM and SAXS. We have registered scattered reflection spectra for synthesized Y0.95Er0.05PO4 and Y0.95Er0.05PO4⋅0.8H2O powders. Also, we have obtained luminescent spectra of these nanocrystalline samples for 4I13/2 → 4I15/2 transition of Er3+ ion with excitation of 4I11/2 level. We have proposed the mode of application of nanocrystalline powders Y0.95Er0.05PO4 and Y0.95Er0.05PO4⋅0.8H2O for the development of composite materials based on polymer capsules that are being used in targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anipina M, Sukhorukov GB (2011) Remote control over guidance and release properties of composite polyelectrolyte based capsules. Adv Drug Deliv Rev 56:95–115. doi:10.1016/j.addr.2011.03.012

    Google Scholar 

  • Assaaoudi H, Ennaciri A, Rulmont A (2001) Vibrational spectra of hydrated rare earth orthophosphates. Vib Spectr 25:81–90. doi:10.1016/S0924-2031(00)00109-0

    Article  Google Scholar 

  • Balakrishnaiah R, Kim DW, Yi SS, Kim SH, Jang K, Lee HS, Moon BK, Jeong JH (2010) NIR to VIS frequency upconversion luminescence properties of Er3+-doped YPO4 phosphors. Thin Solid Films 518(22):6145–6148. doi:10.1016/j.tsf.2010.04.062

    Article  Google Scholar 

  • Boatner LA (2002) Synthesis, structure, and properties of monazite, pretulite, and xenotime. Rev Miner Geochem 48:87–121. doi:10.2138/rmg.2002.48.4

    Article  Google Scholar 

  • Di W, Zhao X, Lu S, Wang X, Zhao H (2007) Thermal and photoluminescence properties of hydrated YPO4:Eu3+ nanowires. State Chem 180(2478–2484):3

    Google Scholar 

  • Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, London

    Google Scholar 

  • Heesun Y, Sooyeon S, Mostafa A, Holloway PH (2007) Synthesis and luminescent properties of rare earth doped YVO4 nanocrystalline powders. J Ceram Process Res 8:256–260

    Google Scholar 

  • Hikichi Y, Sasaki T, Murayama K, Nomura T, Miyamoto M (1989) Mechanochemical changes of weinschenkite-type RPO4·2H2O (R = Dy, Y, Er, or Yb) by grinding and thermal reactions of the ground specimens. J Am Ceram Soc 72:1073–1076. doi:10.1111/j.1151-2916.1989.tb06276.x

    Article  Google Scholar 

  • Jones FW (1938) The measurement of particle size by the X-ray method. Proc R Soc Lond A 166:16–43. doi:10.1098/rspa.1938.0079

    Article  Google Scholar 

  • Kolitsch U, Holtstam D (2004) Crystal chemistry of REEXO4 compounds (X = P, As, V). II. Review of REEXO4 compounds and their stability fields. Eur J Miner 16:117–126. doi:10.1127/0935-1221/2004/0016-0117

    Article  Google Scholar 

  • Lai H, Bao A, Yang Y, Xu W, Tao Y, Yang H (2008) Preparation and luminescence property of Dy3+-doped YPO4 phosphors. J Lumin 128:521–524. doi:10.1016/j.jlumin.2007.09.027

    Article  Google Scholar 

  • Li C, Hou Z, Zhang C, Yang P, Li G, Xu Z, Fan Y, Lin J (2009) Controlled synthesis of Ln3+ (Ln = Tb, Eu, Dy) and V5+ ion-doped YPO4 nano-/microstructures with tunable luminescent colors. Chem Mater 21(19):4598–4607. doi:10.1021/cm901658k

    Article  Google Scholar 

  • Lin S, Dong X, Jia R, Yuan Y (2010) Controllable synthesis and luminescence property of LnPO4 (Ln = La, Gd, Y) nanocrystals. J Mater Sci Mater Electron 21:38–44. doi:10.1007/s10854-009-9866-7

    Article  Google Scholar 

  • Lucas S, Champion E, Bregiroux D, Bernache-Assollant D, Audubert F (2004) Rare earth phosphate powders RePO4 nH2O (Re = La, Ce or Y)-Part I. Synthesis and characterization. J Solid State Chem 177:1302–1311. doi:10.1016/j.jssc.2003.11.003

    Article  Google Scholar 

  • Lucas S, Champion E, Bernache-Assollant D, Leroy G (2006) Sintering and microstructure of rare earth phosphate ceramics REPO4 with RE = La, Ce or Y. J Eur Ceram Soc 26:279–287. doi:10.1016/j.jeurceramsoc.2004.11.004

    Article  Google Scholar 

  • Mezentseva LP, Kruchinina IYu, Osipov AV, Kuchaeva SK, Ugolkov VL, Pugachev KE (2012) Ceramics from nanopowders of orthophosphates of system LaPO4-YPO4-H2O. Glass Phys Chem 38(5):676–687

    Google Scholar 

  • Moine B, Hachani S, Ferid M (2011) Energy transfer between Sm3+ and Er3+ in orthophosphate YPO4. J Lumin 131:2110–2115. doi:10.1016/j.jlumin.2011.05.032

    Article  Google Scholar 

  • Parchur AK, Okram GS, Singh RA, Tewari R, Pradhan L, Vatsa RK, Ningthoujam RS (2010) Effect Of EDTA On luminescence property of Eu+3 doped YPO4 nanoparticles. AIP Conf Proc 1313:391–393. doi:10.1063/1.3530556

    Article  Google Scholar 

  • Pavlov AM, Sapelkin AV, Huang X, P’ng KMY, Bushby AJ, Sukhorukov GB, Skirtach AG (2011) Neuron cells uptake of polymeric microcapsules and subsequent intracellular release. Macromol Biochim 11:848–854. doi:10.1002/mabi.201000494

    Google Scholar 

  • Rodriguez-Liviano S, Aparicio FJ, Rojas TC, Hungría AB, Chinchilla LE, Ocaña M (2012) Microwave-assisted synthesis and luminescence of mesoporous re-doped YPO4 (RE = Eu, Ce, Tb, and Ce + Tb) nanophosphors with lenticular shape. Cryst Growth Des 12(2):635–645. doi:10.1021/cg201358c

    Article  Google Scholar 

  • Seminko VV, Maksimchuk PO, Kononets NV, Masalov AA, Boyko YuI, Malyukin YuV (2012) Spectroscopically detected segregation of Pr3+ ions in YPO4:Pr3+ nanocrystals. Funct Mater 19(3):309–312

    Google Scholar 

  • Skirtach AG, Karageorgiev P, De Geest BG, Pazos-Perez N, Braun D, Sukhorukov GB (2008) Nanorods as wavelength-selective absorption centers in the visible and near-infrared regions of the electromagnetic spectrum. Adv Mater 20:206–510. doi:10.1002/adma.200701542

    Article  Google Scholar 

  • Svergun DI, Feigin LA (1986) Structure analysis by small-angle X-ray and neutron scattering. Science, Moscow

    Google Scholar 

  • Vanetsev AS, Gaitko OM, Chuvashova IG, Sokolov MN, Tretyakov YuD (2011) Microwave hydrothermal synthesis of nanodispersed YV1−x P x O4:Eu powders. Dokl Chem 441:325–329. doi:10.1134/S0012500811110097

    Article  Google Scholar 

  • Vegard L (1927) XLVII. The structure of xenotime and the relation between chemical constitution and crystal structure. Philos Mag 4:511. doi:10.1080/14786440908564357

    Google Scholar 

Download references

Acknowledgments

This work performed as part of the base portion of the state task in the scientific activities of The Ministry of Education and Science of the Russian Federation and is partially supported by European Union through European Social Fund (Mobilitas grant No. MTT 50).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polina A. Ryabochkina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryabochkina, P.A., Antoshkina, S.A., Vanetsev, A.S. et al. Synthesis, spectroscopic and luminescent properties of nanosized powders of yttrium phosphates doped with Er3+ ions. J Nanopart Res 16, 2326 (2014). https://doi.org/10.1007/s11051-014-2326-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2326-1

Keywords

Navigation