Skip to main content
Log in

Performance of graphene, carbon nanotube, and gold nanoparticle chemiresistor sensors for the detection of petroleum hydrocarbons in water

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The performance of chemiresistor sensors made from thin film assemblies of single-wall carbon nanotubes, multiwall carbon nanotubes, reduced graphene oxide nanosheets (RGON), and gold nanoparticles (AuNP) was assessed with an immersible microelectrode array. Carbon nanotube and RGON chemiresistors were functionalized with octadecyl-1-amine and the AuNP chemiresistors were functionalized with 1-hexanethiol. The analytes examined were aqueous solutions of petroleum hydrocarbons: cyclohexane, naphthalene, benzene, toluene, ethylbenzene, and the three isomers of xylene (BTEX analytes). Titrations were performed to determine the detection limits of the different chemiresistors. The AuNP chemiresistor was the most sensitive to all the analytes with limits of detection between 0.2 and 0.6 ppm in water. In contrast, the multiwall carbon nanotube chemiresistor was the least sensitive to the analytes with limits of detection between 20 and 200 ppm. These sensitivities show that these nanomaterials have the potential, with further optimization, of being incorporated into devices that would respond to hydrocarbons in water at concentrations relevant to the regulations of the US Environmental Protection Agency. The stability of the sensors over 26 days was also assessed. Remarkably, there was a negligible change in the electrical resistance of the RGON sensors over this time. The nanotube sensors increased in resistance and the AuNP decreased in resistance over the same period. The drifting resistances did not affect the sensitivity of the nanomaterials, which remained constant with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham JK, Philip B, Witchurch A, Varadan VK, Reddy CC (2004) A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Mater Struct 13(5):1045–1049. doi:10.1088/0964-1726/13/5/010

    Article  Google Scholar 

  • Ahn H, Chandekar A, Kang B, Sung C, Whitten JE (2004) Electrical conductivity and vapor-sensing properties of ω-(3-thienyl)alkanethiol-protected gold nanoparticle films. Chem Mater 16(17):3274–3278. doi:10.1021/cm049794x

    Article  Google Scholar 

  • Alwarappan S, Erdem A, Liu C, Li C-Z (2009) Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113(20):8853–8857. doi:10.1021/jp9010313

    Article  Google Scholar 

  • Anantram MP, Léonard F (2006) Physics of carbon nanotube electronic devices. Rep Prog Phys 69(3):507–561. doi:10.1088/0034-4885/69/3/R01

    Article  Google Scholar 

  • Ancona MG, Snow AW, Foos EE, Kruppa W, Bass R (2006) Scaling properties of gold nanocluster chemiresistor sensors. IEEE Sens J 6(6):1403–1414. doi:10.1109/JSEN.2006.884447

    Article  Google Scholar 

  • Bekyarova E, Davis M, Burch T, Itkis ME, Zhao B, Sunshine S, Haddon RC (2004) Chemically functionalized single-walled carbon nanotubes as ammonia sensors. J Phys Chem B 108(51):19717–19720. doi:10.1021/jp0471857

    Article  Google Scholar 

  • Bohrer FI, Covington E, Kurdak Ç, Zellers ET (2011) Characterization of dense arrays of chemiresistor vapor sensors with submicrometer features and patterned nanoparticle interface layers. Anal Chem 83(10):3687–3695. doi:10.1021/ac200019a

    Article  Google Scholar 

  • Bradley K, Gabriel J-CP, Star A, Grüner G (2003) Short-channel effects in contact-passivated nanotube chemical sensors. Appl Phys Lett 83(18):3821–3823. doi:10.1063/1.1619222

    Article  Google Scholar 

  • Briman M, Bradley K, Gruner G (2006) Source of 1/f noise in carbon nanotube devices. J Appl Phys 100(1):013505. doi:10.1063/1.2210570

    Article  Google Scholar 

  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 7:801–802. doi:10.1039/c39940000801

    Article  Google Scholar 

  • Chen J, Rao AM et al (2001) Dissolution of full-length single-walled carbon nanotubes. J Phys Chem B 105(13):2525–2528. doi:10.1021/jp002596i

    Article  Google Scholar 

  • Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3(4):206–209. doi:10.1038/nnano.2008.58

    Article  Google Scholar 

  • Chow E, Herrmann J, Barton CS, Raguse B, Wieczorek L (2009) Inkjet-printed gold nanoparticle chemiresistors: influence of film morphology and ionic strength on the detection of organics dissolved in aqueous solution. Anal Chim Acta 632(1):135–142. doi:10.1016/j.aca.2008.10.070

    Article  Google Scholar 

  • Chow E, Gengenbach TR, Wieczorek L, Raguse B (2010a) Detection of organics in aqueous solution using gold nanoparticles modified with mixed monolayers of 1-hexanethiol and 4-mercaptophenol. Sens Actuators B 143(2):704–711. doi:10.1016/j.snb.2009.10.024

    Article  Google Scholar 

  • Chow E, Müller K-H, Davies E, Raguse B, Wieczorek L, Cooper JS, Hubble LJ (2010b) Characterization of the sensor response of gold nanoparticle chemiresistors. J Phys Chem C 114(41):17529–17534. doi:10.1021/jp106055p

    Article  Google Scholar 

  • Chow E, Raguse B, Müller K-H, Wieczorek L, Bendavid A, Cooper JS, Hubble LJ, Webster MS (2013) Influence of gold nanoparticle film porosity on the chemiresistive sensing performance. Electroanalysis 25(10):2313–2320. doi:10.1002/elan.201300303

    Google Scholar 

  • Cooper JS, Raguse B, Chow E, Hubble L, Müller K-H, Wieczorek L (2010) Gold nanoparticle chemiresistor sensor array that differentiates between hydrocarbon fuels dissolved in artificial seawater. Anal Chem 82(9):3788–3795. doi:10.1021/ac1001788

    Article  Google Scholar 

  • Cooper JS, Chow E, Hubble LJ, Wieczorek L, Müller K-H, Raguse B (2011) Chemical sensor array that can differentiate complex hydrocarbon mixtures dissolved in seawater. Sens Lett 9(2):609–611. doi:10.1166/sl.2011.1573

    Article  Google Scholar 

  • Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson ATC (2009) Intrinsic response of graphene vapor sensors. Nano Lett 9(4):1472–1475. doi:10.1021/nl8033637

    Article  Google Scholar 

  • Doleman BJ, Lonergan MC, Severin EJ, Vaid TP, Lewis NS (1998) Quantitative study of the resolving power of arrays of carbon black-polymer composites in various vapor-sensing tasks. Anal Chem 70(19):4177–4190. doi:10.1021/ac971204+

    Article  Google Scholar 

  • Dovgolevsky E, Konvalina G, Tisch U, Haick H (2011) Monolayer-capped cubic platinum nanoparticles for sensing nonpolar analytes in highly humid atmospheres. J Phys Chem C 114(33):14042–14049. doi:10.1021/jp105810w

    Article  Google Scholar 

  • Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010a) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751–758. doi:10.1021/nl904286r

    Article  Google Scholar 

  • Dresselhaus MS, Jorio A, Saito R (2010b) Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu Rev Condens Matter Phys 1(1):89–108. doi:10.1146/annurev-conmatphys-070909-103919

    Article  Google Scholar 

  • EPA (2010) Protection of environment. Code of Federal Regulations, Title 40, Pt. 141.61, 2010

  • Evans SD, Johnson SR, Cheng YL, Shen T (2000) Vapour sensing using hybrid organic–inorganic nanostructured materials. J Mater Chem 10(1):183–188. doi:10.1039/A903951A

    Article  Google Scholar 

  • Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2(1):36–50. doi:10.1002/smll.200500261

    Article  Google Scholar 

  • Gittins DI, Caruso F (2001) Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew Chem Int Ed 40(16):3001–3004. doi:10.1002/1521-3773(20010817)40:16<3001:AID-ANIE3001>3.0.CO;2-5

    Article  Google Scholar 

  • Hangarter CM, Bangar M, Mulchandani A, Myung NV (2010) Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors. J Mater Chem 20(16):3131–3140. doi:10.1039/b915717d

    Article  Google Scholar 

  • Helbling T, Hierold C, Durrer L, Roman C, Pohle R, Fleischer M (2008) Suspended and non-suspended carbon nanotube transistors for NO2 sensing—a qualitative comparison. Phys Status Solidi B 245(10):2326–2330. doi:10.1002/pssb.200879599

    Article  Google Scholar 

  • Hill EW, Vijayaragahvan A, Novoselov K (2011) Graphene Sensors. IEEE Sens J 11(12):3161–3170. doi:10.1109/JSEN.2011.2167608

    Article  Google Scholar 

  • Hu N, Wang Y, Chai J, Gao R, Yang Z, Kong ES-W, Zhang Y (2012) Gas sensor based on p-phenylenediamine reduced graphene oxide. Sens Actuators B 163(1):107–114. doi:10.1016/j.snb.2012.01.016

    Article  Google Scholar 

  • Hubble L, Wieczorek L, Müller K-H, Chow E, Cooper J, Raguse B (2010) Electrical noise in gold nanoparticle chemiresistors: effects of measurement environment and organic linker properties. Nanoscience and Nanotechnology (ICONN), 2010 International Conference on, 22–26 Feb 2010. pp 37–40. doi:10.1109/iconn.2010.6045169

  • Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339. doi:10.1021/ja01539a017

    Article  Google Scholar 

  • Ibañez FJ, Zamborini FP (2012) Chemiresistive sensing with chemically modified metal and alloy nanoparticles. Small 8(2):174–202. doi:10.1002/smll.201002232

    Article  Google Scholar 

  • Joseph Y, Besnard I et al (2003) Self-assembled gold nanoparticle/alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor-sensing properties. J Phys Chem B 107(30):7406–7413. doi:10.1021/jp030439o

    Article  Google Scholar 

  • Joseph Y, Krasteva N et al (2004) Gold-nanoparticle/organic linker films: self-assembly, electronic and structural characterisation, composition and vapour sensitivity. Faraday Discuss 125:77–97. doi:10.1039/B302678G

    Article  Google Scholar 

  • Joshi RK, Gomez H, Alvi F, Kumar A (2010) Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions. J Phys Chem C 114(14):6610–6613. doi:10.1021/jp100343d

    Article  Google Scholar 

  • Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625. doi:10.1126/science.287.5453.622

    Article  Google Scholar 

  • Kurdak C, Kim J, Kuo A, Lucido JJ, Farina LA, Bai X, Rowe MP, Matzger AJ (2005) 1/f Noise in gold nanoparticle chemosensors. Appl Phys Lett 86(7):073506. doi:10.1063/1.1865324

    Article  Google Scholar 

  • Lange U, Mirsky VM (2011) Chemiresistors based on conducting polymers: a review on measurement techniques. Anal Chim Acta 687(2):105–113. doi:10.1016/j.aca.2010.11.030

    Article  Google Scholar 

  • Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett 3(7):929–933. doi:10.1021/nl034220x

    Article  Google Scholar 

  • Li Y, H-c Wang, M-j Yang (2007) n-Type Gas sensing characteristics of chemically modified multi-walled carbon nanotubes and PMMA composite. Sens Actuators B 121(2):496–500. doi:10.1016/j.snb.2006.04.074

    Article  Google Scholar 

  • Liu J, Legros S, Ma G, Veinot JGC, von der Kammer F, Hofmann T (2012) Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles. Chemosphere 87(8):918–924. doi:10.1016/j.chemosphere.2012.01.045

    Article  Google Scholar 

  • Lonergan MC, Severin EJ, Doleman BJ, Beaber SA, Grubbs RH, Lewis NS (1996) Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem Mater 8(9):2298–2312. doi:10.1021/cm960036j

    Article  Google Scholar 

  • Luo Y-R (2012) Bond dissociation energies. In: Lide DL (ed) CRC handbook of chemistry and physics (Internet Version), CRC Press/Taylor and Francis, Boca Raton, pp 9–66

  • Maeng S, Moon S et al (2008) Highly sensitive NO2 sensor array based on undecorated single-walled carbon nanotube monolayer junctions. Appl Phys Lett 93(11):113111. doi:10.1063/1.2982428

    Article  Google Scholar 

  • Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8(12):4469–4476. doi:10.1021/nl802412n

    Article  Google Scholar 

  • Müller K-H, Herrmann J, Raguse B, Baxter G, Reda T (2002) Percolation model for electron conduction in films of metal nanoparticles linked by organic molecules. Phys Rev B 66(7):75417. doi:10.1103/Physrevb.66.075417

    Article  Google Scholar 

  • Müller K-H, Wei G, Raguse B, Myers J (2003) Three-dimensional percolation effect on electrical conductivity in films of metal nanoparticles linked by organic molecules. Phys Rev B 68(15):155407. doi:10.1103/PhysRevB.68.155407

    Article  Google Scholar 

  • Müller K-H, Chow E, Wieczorek L, Raguse B, Cooper JS, Hubble LJ (2011) Dynamic response of gold nanoparticle chemiresistors to organic analytes in aqueous solution. Phys Chem Chem Phys 13(40):18208–18216. doi:10.1039/C1CP20242A

    Article  Google Scholar 

  • Myers M, Cooper J, Pejcic B, Baker M, Raguse B, Wieczorek L (2011) Functionalized graphene as an aqueous phase chemiresistor sensing material. Sens Actuators B 155(1):154–158. doi:10.1016/j.snb.2010.11.040

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. doi:10.1126/science.1102896

    Article  Google Scholar 

  • Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett 9(9):3318–3322. doi:10.1021/nl901596m

    Article  Google Scholar 

  • Ong KG, Zeng K, Grimes CA (2002) A wireless, passive carbon nanotube-based gas sensor. IEEE Sens J 2(2):82–88. doi:10.1109/JSEN.2002.1000247

    Article  Google Scholar 

  • Pejcic B, Eadington P, Ross A (2007) Environmental monitoring of hydrocarbons: a chemical sensor perspective. Environ Sci Technol 41(18):6333–6342. doi:10.1021/es0704535

    Article  Google Scholar 

  • Peng G, Tisch U et al (2009a) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4:669–673. doi:10.1038/nnano.2009.235

    Article  Google Scholar 

  • Peng G, Tisch U, Haick H (2009b) Detection of nonpolar molecules by means of carrier scattering in random networks of carbon nanotubes: toward diagnosis of diseases via breath samples. Nano Lett 9(4):1362–1368. doi:10.1021/nl8030218

    Article  Google Scholar 

  • Penza M, Rossi R, Alvisi M, Signore MA, Serra E (2009) Effects of reducing interferers in a binary gas mixture on NO2 gas adsorption using carbon nanotube networked films based chemiresistors. J Phys D Appl Phys 42(7):072002. doi:10.1088/0022-3727/42/7/072002

    Article  Google Scholar 

  • Philip B, Abraham JK, Chandrasekhar A, Varadan VK (2003) Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater Struct 12(6):935–939. doi:10.1088/0964-1726/12/6/010

    Article  Google Scholar 

  • Raguse B, Chow E, Barton CS, Wieczorek L (2007) Gold nanoparticle chemiresistor sensors: direct sensing of organics in aqueous electrolyte solution. Anal Chem 79(19):7333–7339. doi:10.1021/ac070887i

    Article  Google Scholar 

  • Raguse B, Barton CS, Müller K-H, Chow E, Wieczorek L (2009) Gold nanoparticle chemiresistor sensors in aqueous solution: comparison of hydrophobic and hydrophilic nanoparticle films. J Phys Chem C 113(34):15390–15397. doi:10.1021/Jp9034453

    Article  Google Scholar 

  • Rider AE, Kumar S, Furman SA, Ostrikov K (2012) Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform. Chem Commun 48(21):2659–2661. doi:10.1039/c2cc17326c

    Article  Google Scholar 

  • Roberts ME, LeMieux MC, Bao Z (2009) Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors. ACS Nano 3(10):3287–3293. doi:10.1021/nn900808b

    Article  Google Scholar 

  • Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140. doi:10.1021/nl8013007

    Article  Google Scholar 

  • Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779. doi:10.1021/cr2001178

    Article  Google Scholar 

  • Salehi-Khojin A, Khalili-Araghi F, Kuroda MA, Lin KY, Leburton J-P, Masel RI (2011) On the sensing mechanism in carbon nanotube chemiresistors. ACS Nano 5(1):153–158. doi:10.1021/nn101995f

    Article  Google Scholar 

  • Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655. doi:10.1038/nmat1967

    Article  Google Scholar 

  • Shao Q, Liu G, Teweldebrhan D, Balandin AA, Rumyantsev S, Shur MS, Yan D (2009) Flicker noise in bilayer graphene transistors. IEEE Electron Device Lett 30(3):288–290. doi:10.1109/led.2008.2011929

    Article  Google Scholar 

  • Teh K-S, Lin L (2005) MEMS sensor material based on polypyrrole-carbon nanotube nanocomposite: film deposition and characterization. J Micromech Microeng 15(11):2019–2027. doi:10.1088/0960-1317/15/11/005

    Article  Google Scholar 

  • Terrill RH, Postlethwaite TA et al (1995) Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J Am Chem Soc 117(50):12537–12548. doi:10.1021/ja00155a017

    Article  Google Scholar 

  • Thomsen C, Reich S (2007) Raman scattering in carbon nanotubes. In: Cardona M, Merlin R (eds) Light scattering in solids IX. Springer, Berlin, pp 115–234

    Google Scholar 

  • Vichchulada P, Lipscomb LD, Zhang Q, Lay MD (2009) Incorporation of single-walled carbon nanotubes into functional sensor applications. J Nanosci Nanotechnol 9(4):2189–2200. doi:10.1166/jnn.2009.SE11

    Article  Google Scholar 

  • Wang F, Swager TM (2011) Diverse chemiresistors based upon covalently modified multiwalled carbon nanotubes. J Am Chem Soc 133(29):11181–11193. doi:10.1021/ja201860g

    Article  Google Scholar 

  • Wang F, Gu H, Swager TM (2008) Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. J Am Chem Soc 130(16):5392–5393. doi:10.1021/ja710795k

    Article  Google Scholar 

  • Wang G, Shen X, Wang B, Yao J, Park J (2009a) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47(5):1359–1364. doi:10.1016/j.carbon.2009.01.027

    Article  Google Scholar 

  • Wang J, Yang S, Guo D, Yu P, Li D, Ye J, Mao L (2009b) Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochem Commun 11(10):1892–1895. doi:10.1016/j.elecom.2009.08.019

    Article  Google Scholar 

  • Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3):2088–2106. doi:10.3390/s100302088

    Article  Google Scholar 

  • Wei C, Dai L, Roy A, Tolle TB (2006) Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites. J Am Chem Soc 128(5):1412–1413. doi:10.1021/ja0570335

    Article  Google Scholar 

  • Wohltjen H, Snow AW (1998) Colloidal metal-insulator-metal ensemble chemiresistor sensor. Anal Chem 70(14):2856–2859. doi:10.1021/ac9713464

    Article  Google Scholar 

  • Wuelfing WP, Murray RW (2002) Electron hopping through films of arenethiolate monolayer-protected gold clusters. J Phys Chem B 106(12):3139–3145. doi:10.1021/jp013987f

    Article  Google Scholar 

  • Wuelfing WP, Green SJ, Pietron JJ, Cliffel DE, Murray RW (2000) Electronic conductivity of solid-state, mixed-valent, monolayer-protected Au clusters. J Am Chem Soc 122(46):11465–11472. doi:10.1021/ja002367+

    Article  Google Scholar 

  • Xia L, Wei Z, Wan M (2010) Conducting polymer nanostructures and their application in biosensors. J Colloid Interface Sci 341(1):1–11. doi:10.1016/j.jcis.2009.09.029

    Article  Google Scholar 

  • Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065):201–204. doi:10.1038/nature04235

    Article  Google Scholar 

  • Zhang T, Nix MB, Yoo B-Y, Deshusses MA, Myung NV (2006) Electrochemically functionalized single-walled carbon nanotube gas sensor. Electroanalysis 18(12):1153–1158. doi:10.1002/elan.200603527

    Article  Google Scholar 

  • Zhang T, Mubeen S, Myung NV, Deshusses MA (2008) Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19(33):332001. doi:10.1088/0957-4484/19/33/332001

    Article  Google Scholar 

  • Zhao J, Buldum A, Han J, Lu JP (2002) Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13(2):195–200. doi:10.1088/0957-4484/13/2/312

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly funded by Chevron through the West Australian Energy Research Alliance (WAERA). The authors are grateful for scientific and technical input from the Australian Microscopy & Microanalysis Research Facility (AMMRF). We are also particularly grateful to R. Chai for fabricating electrodes, J. Myers for synthesizing gold nanoparticles, and M. Roberts for building the electrical testing instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Cooper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, J.S., Myers, M., Chow, E. et al. Performance of graphene, carbon nanotube, and gold nanoparticle chemiresistor sensors for the detection of petroleum hydrocarbons in water. J Nanopart Res 16, 2173 (2014). https://doi.org/10.1007/s11051-013-2173-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2173-5

Keywords

Navigation