Skip to main content

Advertisement

Log in

Cytotoxicity and drug release behavior of PNIPAM grafted on silica-coated iron oxide nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The nanoparticles containing thermosensitive and magnetic properties were investigated for their potential use as a novel drug carrier for targeted and controlled release drug delivery system. These thermosensitive and magnetic nanoparticles were prepared by grafting thermosensitive poly (N-isopropylacrylamide) (PNIPAM) on the surface of silica (SiO2)-coated Fe3O4 nanoparticles with the particle size of 18.8 ± 1.6 nm. Adsorption and desorption behavior of bovine serum albumin (BSA) on the surface of PNIPAM-grafted SiO2/Fe3O4 nanoparticles was studied, and the results indicated that these nanoparticles were able to absorb protein at temperature above the lower critical solution temperature (LCST) and to be desorbed below the LCST. Cytotoxicity studies conducted on Chinese hamster ovary (CHO-K1) cells using methyl tetrazolium (MTT) assays revealed that cell viability of 1 mg/mL PNIPAM-grafted nanoparticles was slightly decreased after 24 h of incubation as compared to the lower concentration of nanoparticles. Furthermore, the concentration of 0.5 mg/mL PNIPAM-grafted nanoparticles was totally biocompatible for 48 h, but had low cytotoxicity after 72 h of incubation. These PNIPAM-grafted nanoparticles did not induce morphological change in their cellularity after exposure for 24 and 108 h. These results demonstrate that PNIPAM-grafted nanoparticles are biocompatible and have potential use as drug carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexiou C, Schmidt A, Klein R, Hulin P, Bergemann C, Arnold W (2002) Magnetic drug targeting: biodistribution and dependency on magnetic field strength. J Magn Magn Mater 252:363–366

    Article  CAS  Google Scholar 

  • Chang Y, Su ZX (2002) Preparation and characterization of thermosensitive magnetic particles. Mater Sci Eng A Struct Mater Prop Microstruct Process 333(1–2):155–159

    Google Scholar 

  • Cory AH, Owen TC, Barltrop JA, Cory JG (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3(7):207–212

    CAS  Google Scholar 

  • Deng Y-H, Wang C–C, Hu J-H, Yang W-L, Fu S-K (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids Surf A Physicochem Eng Asp 262(1–3):87–93

    Article  CAS  Google Scholar 

  • Di Virgilio AL, Reigosa M, Arnal PM, de Mele MFL (2010) Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (cho-k1) cells. J Hazard Mater 177(1–3):711–718. doi:10.1016/j.jhazmat.2009.12.089

    Article  CAS  Google Scholar 

  • Ding XB, Sun ZH, Zhang WC, Peng YX, Wan GX, Jiang YY (2000) Adsorption/desorption of protein on magnetic particles covered by thermosensitive polymers. J Appl Polym Sci 77(13):2915–2920

    Article  CAS  Google Scholar 

  • Duracher D, Veyret R, Elaissari A, Pichot C (2004) Adsorption of bovine serum albumin protein onto amino-containing thermosensitive core–shell latexes. Polym Int 53(5):618–626. doi:10.1002/pi.1441

    Article  CAS  Google Scholar 

  • Eeckman F, Amighi K, Moes AJ (2001) Effect of some physiological and non-physiological compounds on the phase transition temperature of thermoresponsive polymers intended for oral controlled-drug delivery. Int J Pharm 222(2):259–270

    Article  CAS  Google Scholar 

  • Fan L, Wu H, Zhang H, Li F, Yang T-h, Gu C-h, Yang Q (2008) Novel super pH-sensitive nanoparticles responsive to tumor extracellular pH. Carbohydr Polym 73(3):390–400

    Article  CAS  Google Scholar 

  • Fisichella M, Dabboue H, Bhattacharyya S, Saboungi M-L, Salvetat J-P, Hevor T, Guerin M (2009) Mesoporous silica nanoparticles enhance MTT formazan exocytosis in hela cells and astrocytes. Toxicol In Vitro 23(4):697–703

    Article  CAS  Google Scholar 

  • Gelbrich T, Feyen M, Schmidt AM (2006) Magnetic thermoresponsive core–shell nanoparticles. Macromolecules 39(9):3469–3472. doi:10.1021/ma060006u

    Article  CAS  Google Scholar 

  • Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222

    Article  CAS  Google Scholar 

  • Huang FK, Chen WC, Lai SF, Liu CJ, Wang CL, Wang CH, Chen HH, Hua TE, Cheng YY, Wu MK, Hwu Y, Yang CS, Margaritondo G (2010) Enhancement of irradiation effects on cancer cells by cross-linked dextran-coated iron oxide (clio) nanoparticles. Phys Med Biol 55(2):469–482. doi:10.1088/0031-9155/55/2/009

    Article  CAS  Google Scholar 

  • Huo D, Li Y, Qian Q, Kobayashi T (2006) Temperature–pH sensitivity of bovine serum albumin protein-microgels based on cross-linked poly(N-isopropylacrylamide-co-acrylic acid). Colloids Surf B Biointerfaces 50(1):36–42. doi:10.1016/j.colsurfb.2006.03.020

    Article  CAS  Google Scholar 

  • Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LCJ, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon J-C, Marano F (2009) Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 260(1–3):142–149

    Article  CAS  Google Scholar 

  • Kawaguchi H, Kawahara M, Yaguchi N, Hoshino F, Ohtsuka Y (1988) Hydrogel microspheres. 1. Preparation of monodisperse hydrogel microspheres of sub-micron or micron size. Polym J 20(10):903–909

    Article  CAS  Google Scholar 

  • Kohler N, Sun C, Wang J, Zhang MQ (2005) Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21(19):8858–8864. doi:10.1021/la0503451

    Article  CAS  Google Scholar 

  • Lee WK, Ko JS, Kim HM (2002) Effect of electrostatic interaction on the adsorption of globular proteins on octacalcium phosphate crystal film. J Colloid Interface Sci 246(1):70–77. doi:10.1006/jcis.2001.8026

    Article  CAS  Google Scholar 

  • Lien YH, Wu TM (2008) Preparation and characterization of thermosensitive polymers grafted onto silica-coated iron oxide nanoparticles. J Colloid Interface Sci 326(2):517–521. doi:10.1016/j.jcis.2008.06.020

    Article  CAS  Google Scholar 

  • Lu Y, Mei Y, Ballauff M, Drechsler M (2006) Thermosensitive core–shell particles as carrier systems for metallic nanoparticles. J Phys Chem B 110(9):3930–3937. doi:10.1021/jp057149n

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  • Muller-Schulte D, Schmitz-Rode T (2006) Thermosensitive magnetic polymer particles as contactless controllable drug carriers. J Magn Magn Mater 302(1):267–271. doi:10.1016/j.jmmm.2005.05.043

    Article  Google Scholar 

  • Osswald J, Fehr KT (2006) FTIR spectroscopic study on liquid silica solutions and nanoscale particle size determination. J Mater Sci 41(5):1335–1339. doi:10.1007/s10853-006-7327-8

    Article  CAS  Google Scholar 

  • Piskareva O, Clynes M, Barron N (2007) Detection and cloning of Line-1 elements in CHO cells. Cytotechnology 53(1–3):75–80. doi:10.1007/s10616-007-9051-x

    Article  CAS  Google Scholar 

  • Rubio-Retama J, Zafeiropoulos NE, Serafinelli C, Rojas-Reyna R, Voit B, Cabarcos EL, Stamm M (2007) Synthesis and characterization of thermosensitive PNIPAM microgels covered with superparamagnetic gamma-Fe2O3 nanoparticles. Langmuir 23(20):10280–10285. doi:10.1021/la7009594

    Article  CAS  Google Scholar 

  • Schonhoff M, Larsson A, Welzel PB, Kuckling D (2002) Thermoreversible polymers adsorbed to colloidal silica: A H-1NMR and DSC study of the phase transition in confined geometry. J Phys Chem B 106(32):7800–7808. doi:10.1021/jp015538l

    Article  Google Scholar 

  • Shamim N, Hong L, Hidajat K, Uddin MS (2006) Thermosensitive-polymer-coated magnetic nanoparticles: adsorption and desorption of bovine serum albumin. J Colloid Interface Sci 304(1):1–8

    Article  CAS  Google Scholar 

  • Shamim N, Hong L, Hidajat K, Uddin MS (2007) Thermosensitive polymer coated nanomagnetic particles for separation of bio-molecules. Sep Purif Technol 53(2):164–170. doi:10.1016/j.seppur.2006.06.021

    Article  CAS  Google Scholar 

  • Shikano N, Nakajima S, Kotani T, Oqura M, Saqara J, Iwamura Y, Yoshimoto M, Kubota N, Ishikawa N, Kawai K (2007) Transport of d-[1-14C]-amino acids into Chinese hamster ovary (CHO-K1) cells: implications for use of labeled d-amino acids as molecular imaging agents. Nucl Med Biol 34(6):659–665. doi:10.1016/j.nucmedbio.2007.05.001

    Article  CAS  Google Scholar 

  • Stöber W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69

    Article  Google Scholar 

  • Takezawa T, Mori Y, Yoshizato K (1990) Cell culture on a thermoresponsive polymer surface. Biotechnology (NY) 8(9):854–856. doi:10.1038/nbt0990-854

    Article  CAS  Google Scholar 

  • Wadajkar AS, Koppolu B, Rahimi M, Nguyen KT (2009) Cytotoxic evaluation of n-isopropylacrylamide monomers and temperature-sensitive poly(n-isopropylacrylamide) nanoparticles. J Nanopart Res 11(6):1375–1382. doi:10.1007/s11051-008-9526-5

    Article  CAS  Google Scholar 

  • Wang SX, Zhou Y, Sun WT (2009) Preparation and characterization of antifouling thermosensitive magnetic nanoparticles for applications in biomedicine. Mater Sci Eng C Biomim Supramol Syst 29(4):1196–1200. doi:10.1016/j.msec.2008.10.007

    Article  CAS  Google Scholar 

  • Wang CW, Wang J, Gao W, Jiao JQ, Feng HJ, Liu X, Chen LP (2010a) One-pot preparation of thermoresponsive silica-poly(n-isopropylacrylamide) nanocomposite particles in supercritical carbon dioxide. J Colloid Interface Sci 343(1):141–148. doi:10.1016/j.jcis.2009.11.005

    Article  CAS  Google Scholar 

  • Wang P, He J, Wang PN, Chen JY (2010b) Poly (N-isopropylacrylamide)-coated multifunctional nanoparticles for cell tracking. Photomed Laser Surg 28(2):201–205. doi:10.1089/pho.2009.2546

    Article  CAS  Google Scholar 

  • Wu TM, Yen SJ, Chen EC, Sung TW, Chiang RK (2007) Conducting and magnetic behaviors of monodispersed iron oxide/polypyrrole nanocomposites synthesized by in situ chemical oxidative polymerization. J Polym Sci Polym Chem 45(20):4647–4655. doi:10.1002/pola.22211

    Article  CAS  Google Scholar 

  • Yi DK, Lee SS, Papaefthymiou GC, Ying JY (2006) Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem Mater 18(3):614–619. doi:10.1021/cm0512979

    Article  CAS  Google Scholar 

  • Zhang K, Fang H, Chen Z, Taylor JA, Wooley KL (2008) Shape effects of nanoparticles conjugated with cell-penetrating peptides (HIV Tat PTD) on CHO cell uptake. Bioconjug Chem 19(9):1880–1887. doi:10.1021/bc800160b

    Article  CAS  Google Scholar 

  • Zhou Y, Jia Xe, Tan L, Xie Q, Lei L, Yao S (2010) Magnetically enhanced cytotoxicity of paramagnetic selenium–ferroferric oxide nanocomposites on human osteoblast-like mg-63 cells. Biosens Bioelectron 25(5):1116–1121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided by National Science Council through the project NSC96-2221-E-005-049 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzong-Ming Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lien, YH., Wu, TM., Wu, JH. et al. Cytotoxicity and drug release behavior of PNIPAM grafted on silica-coated iron oxide nanoparticles. J Nanopart Res 13, 5065–5075 (2011). https://doi.org/10.1007/s11051-011-0487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0487-8

Keywords

Navigation