Skip to main content
Log in

High accuracy photopyroelectric investigation of dynamic thermal parameters of Fe3O4 and CoFe2O4 magnetic nanofluids

  • Technology and Applications
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The suitability of the photopyroelectric (PPE) calorimetry in measuring the thermal parameters of nanofluids was demonstrated. The main advantages of the method (concerning nanofluids) as compared to classical calorimetric techniques are: high sensitivity and small amount of sample required. The thermal diffusivity and effusivity of some nanofluids based on Fe3O4 and CoFe2O4 type of nanoparticles (mean diameter 6.5 nm) were investigated by using two PPE detection configurations (back and front). In both cases, the information is contained in the phase of the PPE signal. Due to the high accuracy of the results (within ±0.5%) thermal diffusivity was found to be particularly sensitive to changes in relevant parameters of the nanofluid as carrier liquid, type and concentration of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

k :

Thermal conductivity

R :

Reflection coefficient of the thermal wave

e :

Thermal effusivity

f :

Chopping frequency

a :

Reciprocal of the thermal diffusion length

C :

Volume specific heat

α:

Thermal diffusivity

Θ:

Phase of the photopyroelectric signal

μ:

Thermal diffusion length

m:

Material

p:

Pyroelectric sensor

w:

Window

abs:

Absolute value

References

  • Balderas-Lopez JA, Mandelis A, Garcia JA (2000) Thermal-wave resonator cavity design and measurements of the thermal diffusivity of liquids. Rev Sci Instrum 71:2933–2937

    Article  CAS  Google Scholar 

  • Bica D, Vekas L, Rasa M (2002) Preparation and magnetic properties of concentrated magnetic fluids on alcohol and water carrier liquids. J Magn Magn Mater 252:10–12

    Article  CAS  Google Scholar 

  • Chirtoc M, Mihailescu G (1989) Theory of the photopyroelectric method for investigation of optical and thermal materials properties. Phys Rev B 40:9606–9617

    Article  CAS  Google Scholar 

  • Chirtoc M, Dadarlat D, Bicanic D, Antoniow JS, Egee M (1997) Applications of photothermal calorimetry in agriculture, medicine and environmental sciences. In: Mandelis A, Hess P (eds) Progress in photothermal and photoacoustic science and technology. SPIE Optical Engineering Press, Belingham, USA, pp 185–257

    Google Scholar 

  • Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspension. Appl Phys Lett 79:2252–2254

    Article  CAS  Google Scholar 

  • Dadarlat D, Neamtu C (2006) Detection of molecular associations in liquids by photopyroelectric measurements of thermal effusivity. Meas Sci Technol 17:3250–3254

    Article  CAS  Google Scholar 

  • Dadarlat D, Chirtoc M, Neamtu C, Candea R, Bicanic D (1990) Inverse photopyroelectric detection method. Phys Stat Sol (a) 121:K231–K234

    Article  Google Scholar 

  • Dadarlat D, Bicanic D, Visser H, Mercuri F, Frandas A (1995) Photopyroelectric method for determination of thermophysical parameters and detection of phase transitions in fatty acids and triglycerides. Part I: principles, theory and instrumentational concepts. J Am Oil Chem Soc 74:273–281

    Article  Google Scholar 

  • Delenclos S, Chirtoc M, Hadj Sahraoui A, Kolinsky C, Buisine JM (2002) Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method. Rev Sci Instrum 73:2773–2780

    Article  CAS  Google Scholar 

  • Delenclos S, Dadarlat D, Houriez N, Longuermart S, Kolinsky C, Hadj Sahraoui A (2007) On the accurate determination of thermal diffusivity of liquids by using the photopyroelectric thickness scanning method. Rev Sci Instrum 78:024902

    Article  CAS  Google Scholar 

  • Eastman JA, Choi SUS, Li S, Yu W, Thomson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720

    Article  CAS  Google Scholar 

  • Kebilinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Mater Today 8:36–44

    Article  Google Scholar 

  • Longuermart S, Quiroz AG, Dadarlat D, Hadj Sahraoui A, Kolinsky C, Buisine JM, Correa da Silva E, Mansanares AM, Filip X, Neamtu C (2002) An application of the front photopyroelectric technique for measuring the thermal effusivity of some foods. Instr Sci Technol 30:157–165

    Article  Google Scholar 

  • Mandelis A, Zver M (1985) Theory of the photopyroelectric effect in solids. J Appl Phys 57:4421–4430

    Article  CAS  Google Scholar 

  • Marinelli M, Zammit U, Mercuri F, Pizzoferrato R (1992) High-resolution simultaneous photothermal measurements of thermal parameters at a phase transition with the photopyroelectric technique. J Appl Phys 72:1096–1100

    Article  CAS  Google Scholar 

  • Marinelli M, Mercuri F, Zammit U, Pizzoferrato R, Scudieri F, Dadarlat D (1994) Photopyroelectric study of specific heat, thermal conductivity and thermal diffusivity of Cr2O3 at the Neel transition. Phys Rev B 49:9523–9532

    Google Scholar 

  • Neamtu C, Dadarlat D, Chirtoc M, Hadj Sahraoui A, Longuemart S, Bicanic D (2006) Evidencing molecular associations in binary liquid mixtures via photothermal measurements of thermophysical parameters. Instr Sci Technol 34:225–232

    Article  CAS  Google Scholar 

  • Sahraoui AH, Longuermart S, Dadarlat D, Delenclos S, Kolinsky C, Buisine JM (2003) Analysis of the photopyroelectric signal for investigating thermal parameters of pyroelectric materials. Rev Sci Instrum 74:618–623

    Article  CAS  Google Scholar 

  • Shen J, Mandelis A (1995) Thermal-wave resonator cavity. Rev Sci Instrum 66:4999–5005

    Article  CAS  Google Scholar 

  • Shen J, Mandelis A, Tsai H (1998) Signal generation mechanism, intercavity – gas thermal diffusivity temperature dependence and absolute infrared emissivity measurements in a thermal-wave resonant cavity. Rev Sci Instrum 69:197–203

    Article  CAS  Google Scholar 

  • Vekas L, Bica D, Marinica O (2006) Magnetic nanofluids stabilized with various chain length surfactants. Rom Rep Phys 58:257–267

    CAS  Google Scholar 

  • Vekas L, Bica D, Avdeev MV (2007) Magnetic nanoparticles and concentrated magnetic nanofluids: synthesis, properties and some applications. China Particuol 5:43–51

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Streza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dadarlat, D., Neamtu, C., Streza, M. et al. High accuracy photopyroelectric investigation of dynamic thermal parameters of Fe3O4 and CoFe2O4 magnetic nanofluids. J Nanopart Res 10, 1329–1336 (2008). https://doi.org/10.1007/s11051-008-9386-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9386-z

Keywords

Navigation