Skip to main content
Log in

Robust tracking via weighted online extreme learning machine

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The tracking method based on the extreme learning machine (ELM) is efficient and effective. ELM randomly generates input weights and biases in the hidden layer, and then calculates and computes the output weights by reducing the iterative solution to the problem of linear equations. Therefore, ELM offers the satisfying classification performance and fast training time than other discriminative models in tracking. However, the original ELM method often suffers from the problem of the imbalanced classification distribution, which is caused by few target objects, leading to under-fitting and more background samples leading to over-fitting. Worse still, it reduces the robustness of tracking under special conditions including occlusion, illumination, etc. To address above problems, in this paper, we present a robust tracking algorithm. First, we introduce the local weight matrix that is the dynamic creation from the data distribution at the current frame in the original ELM so as to balance between the empirical and structure risk, and fully learn the target object to enhance the classification performance. Second, we improve it to the incremental learning method ensuring tracking real-time and efficient. Finally, the forgetting factor is used to strengthen the robustness for changing of the classification distribution with time. Meanwhile, we propose a novel optimized method to obtain the optimal sample as the target object, which avoids tracking drift resulting from noisy samples. Therefore, our tracking method can fully learn both of the target object and background information to enhance the tracking performance, and it is evaluated in 20 challenge image sequences with different attributes including illumination, occlusion, deformation, etc., which achieves better performance than several state-of-the-art methods in terms of effectiveness and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: IEEE computer society conference on computer vision and pattern recognition. IEEE Computer Society, pp 798-805

  2. Avidan S (2004) Support vector tracking[J]. IEEE Trans Pattern Anal Mach Intell 26(8):1064–1072

    Article  Google Scholar 

  3. Babenko B, Yang M-H, Belongie S (2011) Robust object tracking with online multiple instance learning[J]. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  4. Bala A, Kaur T (2016) Local texton XOR patterns: a new feature descriptor for content-based image retrieval[J]. Eng Sci Technol Int J 19(1):101–112

    Article  Google Scholar 

  5. Bao C, Wu Y, Ling H, Ji H (2012) Real time robust L1 tracker using accelerated proximal gradient approach[C]. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1830–1837

  6. Candes EJ, Tao T (2006) Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Trans Inf Theory 52(12):5406–5425

    Article  MathSciNet  Google Scholar 

  7. Chi JN, Qian C, Zhang P et al (2014) A novel ELM based adaptive Kalman filter tracking algorithm[J]. Neurocomputing 128(5):42–49

    Article  Google Scholar 

  8. Chrysos GG, Antonakos E, Zafeiriou S et al (2015) Offline deformable face tracking in arbitrary videos[C]. In: Proceedings of the IEEE international conference on computer vision workshops, pp 1–9

  9. Collins R, Liu Y, Leordeanu M (2005) Onlineselectionofdiscriminative tracking features[C]. IEEE Trans Pattern Anal Mach Intell 27(10):1631–1643

    Article  Google Scholar 

  10. Deng CW, Huang GB, Xu J et al (2015) Extreme learning machines: new trends and applications[J]. Sci China Inf Sci 58(2):1–16

    Article  Google Scholar 

  11. Donoho DL (2006) Compressed sensing[J]. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  Google Scholar 

  12. Elkan C (2001) The foundations of cost-sensitive learning[C]. Int Joint Conf Artif Intell, Lawrence Erlbaum Assoc Ltd 17(1):973–978

    Google Scholar 

  13. Everingham M, Van Gool L, Williams CKI et al (2010) The pascal visual object classes (voc) challenge[J]. Int J Comput Vis 88(2):303–338

    Article  Google Scholar 

  14. Exner D, Bruns E, Kurz D et al (2010) Fast and robust CAMShift traeking [C]. In: IEEE computer society conference on computer vision and pattern recognition, pp 9–16

  15. Grabner H, Grabner M, Bischof H (2006) Real-time tracking via on-line boosting[C]. Bmvc 1(5):6

    Google Scholar 

  16. Grabner H, Grabner M, Bischof H (2006) Real-time tracking via online boosting[C]. In: Proceedings of British machine vision conference, pp 47–56

  17. He X et al (2014) Networked strong tracking filtering with multiple packet dropouts: algorithms and applications[J]. IEEE Trans Ind Electron 61(3):1454–1463

    Article  Google Scholar 

  18. Huang G, Huang GB, Song S et al (2015) Trends in extreme learning machines: a review[J]. Neural Netw 61:32–48

    Article  Google Scholar 

  19. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications[J]. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  20. Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model[C]. CVPR, pp 1822–1829

  21. Kalal Z, Matas J, Mikolajczyk K (2010) Pn learning: bootstrapping binary classifiers by structural constraints[C]. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 49–56

  22. Kasun LLC, Yang Y, Huang GB et al (2016) Dimension reduction with extreme learning machine[J]. IEEE Trans Image Process 25(8):3906–3918

    Article  MathSciNet  Google Scholar 

  23. Li H, Shen C, Shi Q (2011) Real-time visual tracking using compressive sensing[C]. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1305–1312

  24. Li X, Dick A, Wang H et al (2011) Graph mode-based contextual kernels for robust SVM tracking[C]. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, pp 1156–1163

  25. Li H., Li Y, Porikli F (2014) Robust online visual tracking with a single convolutional neural network[C]. In: Proceedings of 12th Asian conference computer vision, pp 194–209

    Chapter  Google Scholar 

  26. Liu I, Sun Y (1993) Recursive tracking of vascular networks in angiograms based on the detection-deletion scheme[J]. IEEE Trans Med Imaging 12(2):334–341

    Article  Google Scholar 

  27. Mei X, Ling H, Wu Y, Blasch E, Bai L (2011) Minimum error bounded efficient LI tracker with occlusion detection[C]. In: IEEE conference on computer vision and pattern recognition, CVPR 2011, Colorado Springs, Co, Usa, 20-25 June. DBLP, pp 1257–1264

  28. Parag T, Porikli F, Elgammal A (2008) Boosting adaptive linear weak classifiers for online learning and tracking[C]. In: IEEE conference on computer vision and pattern recognition, 2008. CVPR 2008. IEEE, pp 1–8

  29. Revaud J et al (2015) Epicflow: edge-preserving interpolation of correspondences for optical flow[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition

  30. Rong HJ, Huang GB, Sundararajan N et al (2009) Online sequential fuzzy extreme learning machine for function approximation and classification problems[J]. IEEE Trans Syst Man Cybern Part B (Cybernetics) 39(4):1067–1072

    Article  Google Scholar 

  31. Ross DA, Lim J, Lin RS et al (2008) Incremental learning for robust visual tracking[J]. Int J Comput Vis 77(1):125–141

    Article  Google Scholar 

  32. Schindelin J et al (2015) The ImageJ ecosystem: an open platform for biomedical image analysis[J]. Mol Reprod Dev 82(7-8):518–529

    Article  Google Scholar 

  33. Tang J, Deng C, Huang GB (2016) Extreme learning machine for multilayer perceptron[J]. IEEE Trans Neural Netw Learn Syst 27(4):809–821

    Article  MathSciNet  Google Scholar 

  34. Wang S, Lu H, Yang F, Yang M-H (2011) Uperpixel tracking[C]. In: Proceedings of the IEEE international conference on computer vision, pp 1323–1330

  35. Wang Y, Lin X, Wu L, Zhang W (2015) Effective multi-query expansions: Robust Landmark retrieval[J]. In: ACM multimedia. ACM

  36. Wang Y, Lin X, Wu L, Zhang W, Zhang Q (2015) LBMCH: learning bridging mapping for cross-modal hashing[J]. ACM SIGIR

  37. Wang Y, Lin X, Wu L, Zhang W, Zhang Q, Huang X (2015) Robust subspace clustering for multi-view data by exploiting correlation consensus[J]. IEEE Trans Image Process 24(11):3939–3949

    Article  MathSciNet  Google Scholar 

  38. Wang Y, Zhang W, Wu L, Lin X, Fang M, Pan S (2016) Iterative views agreement: an iterative low-rank based structured optimization method to multi-view spectral clustering[J]. arXiv:1608.05560

  39. Wang Y, Zhang W, Wu L, Lin X, Zhao X (2017) Unsupervised metric fusion over multiview data by graph random walk-based cross-view diffusion[J]. IEEE Trans Neural Netw Learn Syst 28(1):57–70

    Article  Google Scholar 

  40. Wang Y, Lin X, Wu L, Zhang W (2017) Effective multi-query expansions: collborative deep networks for Robust Landmark retrieval[J]. IEEE Trans Image Process 26(3):1393–1404

    Article  MathSciNet  Google Scholar 

  41. Wang Y, Wu L (2018) Beyond low-rank representations: Orthogonal clustering basis reconstruction with optimized graph structure for multi-view spectral clustering[J]. Neural Netw 103:1–8

    Article  Google Scholar 

  42. Wang Y, Wu L, Lin X, Gao J (2018) Multiview spectral clustering via structured low-rank matrix factorization[J]. IEEE Transactions on Neural Networks and Learning Systems

  43. Wen J, Gao X, Yuan Y, Tao D, Li J (2010) Incremental tensor biased discriminant analysis: a new color-based visual tracking method[J]. Neurocomputing 73 (4-6):827–839

    Article  Google Scholar 

  44. Wu L, Wang Y, Shepherd J (2013) Efficient image and tag co-ranking: a Bregman divergence optimization method[J]. ACM Multimedia

  45. Wu L, Wang Y (2017) Robust hashing for multi-view data: jointly learning low-rank kernelized similarity consensus and Hash functions[J]. Image Vis Comput 57:58–66

    Article  Google Scholar 

  46. Wu L, Wang Y, Gao J, Li X (2017) Deep adaptive feature embedding with local sample distributions for person re-identification[J]. Pattern Recogn 73:275–288

    Article  Google Scholar 

  47. Wu L, Wang Y, Ge Z, Hu Q, Li X (2018) Structured deep hashing with convolutional neural networks for fast person re-identification[J]. Comput Vis Image Underst 167:63–73

    Article  Google Scholar 

  48. Wu L, Wang Y, Li X, Gao J (2018) Deep attention-based spatially recursive networks for fine-grained visual recognition[J]. IEEE Transactions on Cybernetics

  49. Wu L, Wang Y, Li X, Gao J (2018) What-and-Where to match: deep spatially multiplicative integration networks for person re-identification[J]. Pattern Recogn 76:727–738

    Article  Google Scholar 

  50. Wu L, Wang Y, Shao L (2018) Cycle-consistent deep generative hashing for cross-modal retrieval[J]. arXiv:1804.11013

  51. Yeh YJ, Hsu CT (2009) Online selection of tracking features using AdaBoost[J]. IEEE Trans Circ Syst Video Technol 19(3):442–446

    Article  Google Scholar 

  52. Zhang K, Zhang L, Yang M-H (2012) Real-time compressive tracking. In: European conference on computer vision[C]. Springer, Berlin Heidelberg

    Book  Google Scholar 

  53. Zhang K, Zhang L, Liu Q et al (2014) Fast visual tracking via dense spatio-temporal context learning[C]. In: European conference on computer vision. Springer International Publishing, pp 127–141

  54. Zhang K, Zhang L, Yang MH (2014) Fast compressive tracking[J]. IEEE Trans Pattern Anal Mach Intell 36(10):2002–2015

    Article  Google Scholar 

  55. Zhang J, Feng L, Yu L (2016) A novel target tracking method based on OSELM[J]. Multidim Syst Sign Process 28(3):1–18

    Google Scholar 

  56. Zhou X, Xie L, Zhang P, Zhang Y (2015) An ensemble of deep neural networks for object tracking[C]. In: IEEE international conference on image processing. IEEE, pp 843–847

  57. Zong W, Huang GB, Chen Y (2013) Weighted extreme learning machine for imbalance learning[J]. Neurocomputing 101:229–242

    Article  Google Scholar 

Download references

Funding

This study was funded by the Doctoral Scientific Research Foundation of Liaoning Province (20170520207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggong Ren.

Ethics declarations

Conflict of interests

Author Jing Zhang declares that she has no conflict of interest. Author Huibing Wang declares that he has no conflict of interest. Author Yonggong Ren declares that he has no conflict of interest.

Additional information

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, H. & Ren, Y. Robust tracking via weighted online extreme learning machine. Multimed Tools Appl 78, 30723–30747 (2019). https://doi.org/10.1007/s11042-018-6500-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6500-9

Keywords

Navigation