Skip to main content
Log in

A Study of the Microstructure of Bainite in Steel 25G2S2N2MA by the Method of Atomic Force Microscopy

  • STRUCTURAL STEELS
  • Published:
Metal Science and Heat Treatment Aims and scope

The methods of optical, electron, and atomic force microscopy are used to study the morphology of bainite formed in high-strength structural steel 25G2S2N2MA (HY-TUF) under isothermal quenching. It is shown that the temperature of the transformation affects the substructure of the bainite, which is represented by ordered layers of plates with a width obeying a lognormal distribution law. It is shown that the bainite plates consist of nanosize subplates, the size of which is determined by the temperature of the bainitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. E. S. Davenport and E. S. Bain, “Transformation of austenite at constant subcritical temperatures,” Trans. AIME, 90, 117 – 144 (1930).

    Google Scholar 

  2. G. V. Smith and R. F. Mehl, “Lattice relationships in decomposition of austenite to pearlite, bainite and martensite,” Trans. AIME, 150, 211 – 226 (1942).

    Google Scholar 

  3. H. K. D. H. Bhadeshia, Bainite in Steels. Transformations, Microstructure and Properties, IOM Communications Ltd., London (2001), 478 p.

  4. I. Yu. Pyshmintsev, A. O. Sturin, A. M. Gervasyev et al, “Effect of bainite crystallographic texture on failure of pipe steel sheets made by controlled thermomechanical treatment,” Metallurgist, 60(3), 405 – 412 (2016).

    Article  CAS  Google Scholar 

  5. M. Hillert, “The nature of bainite,” ISIJ Int., 35(9), 1134 – 1140 (1995).

    Article  CAS  Google Scholar 

  6. L. C. D. Fielding, “The bainite controversy,” Mater. Sci. Technol., 29(4), 383 – 399 (2013).

    Article  CAS  Google Scholar 

  7. O. P. Morozov, V.M. Schastlivtsev, and I. L. Yakovleva, “Upper and lower bainite in a carbon eutectoid steel,” Phys. Met. Metallogr., 69(2), 146 – 155 (1990).

    Google Scholar 

  8. D. O. Panov, Yu. N. Simonov, P. A. Leont’ev et al, “Formation of structure and properties of carbide-free bainite in steel 30KhGSA,” Metal Sci. Heat Treat., 58(1), 71 – 75 (2016).

    Article  CAS  Google Scholar 

  9. M. Soliman and H. Palkowski, “Development of the low temperature bainite,” Arch. Civil Mechan. Eng., 16(3), 403 – 412 (2016).

    Article  Google Scholar 

  10. M. A. Smirnov, I. Yu. Pyshnintsev, and A. N. Boryakova, “Classification of low-carbon pipe steel microstructures,” Metallurgist, 54(7), 444 – 454 (2010).

    Article  CAS  Google Scholar 

  11. B. Guo, L. Fan, Q. Wang, et al., “The role of the bainite packet in control of impact toughness in a simulated CGHAZ of X90 pipeline steel,” Metals, 6(256), 1 – 3 (2016).

    CAS  Google Scholar 

  12. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva et al, “Effect of austenite-decomposition temperature on bainite morphology and properties of low-carbon steel after thermomechanical treatment,” Phys. Met. Metallogr., 114, 419 – 429 (2013).

    Article  Google Scholar 

  13. J. S. Kang, J.-B. Seol, and C. G. Park, “Three-dimensional characterization of bainitic microstructures in low-carbon high-strength steel studied by electron backscatter diffraction,” Mater. Charact., 79, 110 – 112 (2013).

    Article  CAS  Google Scholar 

  14. R. Bakhtiari and A. Ekrami, “The effect of bainite morphology on the mechanical properties of a high bainite dual phase (HBDP) steel,” Mater. Sci. Eng. A, 525(1 – 2), 159 – 165 (2009).

    Article  Google Scholar 

  15. K. Abbaszadeh, H. Saghafian, and S. Kheirandish, “Effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC steel,” J. Mater. Sci. Technol., 28(4), 336 – 342 (2012).

    Article  CAS  Google Scholar 

  16. Y. Guo, K. Feng, F. Lu et al, “Effects of isothermal heat treatment on nanostructured bainite morphology and microstructures in laser cladded coating,” Appl. Surf. Sci., 357A, 309 – 316 (2015).

    Article  Google Scholar 

  17. E. Abbasi and W. M. Rainforth, “Microstructural evolution during bainite transformation in a vanadium microalloyed TRIP-assisted steel,” Mater. Sci. Eng. A, 651, 822 – 830 (2016).

    Article  CAS  Google Scholar 

  18. W. Gong, Y. Tomota, Y. Adachi et al, “Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel,” Acta Mater., 61(11), 4142 – 4154 (2013).

    Article  CAS  Google Scholar 

  19. A. Yu. Kaletin and Yu. V. Kaletina, “Evolution of the structure and properties of silicon steels in the austenite-bainite phase transition,” Phys. Solid State, 57(1), 59 – 64 (2015).

    Article  CAS  Google Scholar 

  20. A. A. Zisman, S. N. Petrov, and A. V. Ptashnik, “Quantitative verification of high-strength alloyed steel bainite-martensite structures by scanning electron microscopy,” Metallurgist, 58(11), 1019 – 1024 (2015).

    Article  CAS  Google Scholar 

  21. G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett., 56(9), 930 – 933 (1986).

    Article  CAS  Google Scholar 

  22. M. Miles, “Probing the future,” Science, 277(5333), 1845 – 1847 (1997).

    Article  CAS  Google Scholar 

  23. E. Swallow and H. K. D. H. Bhadeshia, “High resolution observations of displacements caused by bainitic transformation,” Mater. Sci. Technol., 12(2), 121 – 125 (1996).

    Article  CAS  Google Scholar 

  24. T. Ros-Yanes, Y. Houbaert, and A. Mertens, “Characterization of TRIP-assisted multiphase steel surface technology by atomic force microscopy,” Mater. Charact., 47, 93 – 104 (2001).

    Article  Google Scholar 

  25. M. Dryja, A. Lis, and P. Wieczorek, “TRIP steel topography examined by AFM (atomic force microscopy),” Inzynier. Mater., No. 2, 106 – 108 (2014).

  26. Z.-G. Yang, C. Zhang, B.-Z. Bai, and H.-S. Fang, “Observation of bainite surface reliefs in Fe – C alloy by atomic force microscopy,” Mater. Lett., 48, 292 – 298 (2001).

    Article  CAS  Google Scholar 

  27. M. J. Peet and H. K. D. H. Bhadeshia, “Surface relief due to bainite transformation at 473 K (200°C),” Metall. Mater. Trans. A, 42, 3344 – 3348 (2011).

    Article  CAS  Google Scholar 

  28. T. F. A. Santos, E. A. Torres, J. M. C. Vilela et al., “Caracterização Microestrutural De Aços Baixo Carbono Por Microscopia De Força Atômica,” Revista Latinoamericana de Metalurgia y Materiales, 35(1), 118 – 133 (2015).

    Google Scholar 

  29. S. Sharma, S. Sangal, and K. Mondal, “Development of new high-strength carbide-free bainitic steels,” Metall. Mater. Trans. A, 42, 3921 – 3933 (2011).

    Article  CAS  Google Scholar 

  30. L. D. Wang, M. Zhu, W. M. Zhou et al., “Refinement of sub-grain and enhancement of absorption for ultra-high strength bainite steel,” Mater. Sci. Forum, 539 – 543, 4562 – 4565 (2007).

    Article  Google Scholar 

  31. J. M. Oblak and R. F. Hehemann, Structure and Growth of Widmanstatten Ferrite and Bainite. Transformations and Hardenability of Steels, Ann Arbor, Michigan (1967), pp. 15 – 30.

  32. L. C. Chang and H. K. D. H. Bhadeshia, “Microstructure of lower bainite formed at large undercoolings below bainite start temperature,” Mater. Sci. Technol., 12, 233 – 236 (1996).

    Article  CAS  Google Scholar 

Download references

The work has been performed with financial support of the Government of the Russian Federation (Act No. 211, Contract No. 02.A03.21.0006) within a State Assignment of the Ministry of Education and Science of the RF (Project No. 11.1465.2014/K) and a Grant of the President of the Russian Federation for young scientists — candidates of science (MK-7929.2016.8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Maisuradze.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 16 – 20, July, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudin, Y.V., Maisuradze, M.V. & Kuklina, A.A. A Study of the Microstructure of Bainite in Steel 25G2S2N2MA by the Method of Atomic Force Microscopy. Met Sci Heat Treat 60, 427–432 (2018). https://doi.org/10.1007/s11041-018-0295-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-018-0295-1

Key words

Navigation