Skip to main content
Log in

Effect of low-energy pulse laser irradiation on the properties of ultrafine-grain aluminum alloy 1421

  • ALUMINUM ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of low-energy pulse laser irradiation (causing no fusion) on the variation of mechanical properties (the microhardness) and on the start of the process of melting of aluminum alloy 1421 in ultrafine-grained condition is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. P. Yu. Kikin, V. N. Perevezentsev, A. I. Pchelintsev, and E. E. Rusin, “Effect of the structure of ultrafine-grain aluminum alloy 1420 on laser size treatment,” Pisma Zh. Teor. Fiz., 32(19), 47 – 50 (2006).

    Google Scholar 

  2. P. Yu. Kikin, V. N. Perevezentsev, A. I. Pchelintsev, and E. E. Rusin, “Treatment of ultrafine-grain aluminum alloys by pulse laser radiation,” Prob. Mashinostr. Nadezhn. Mashin, No. 5, 87 – 91 (2007).

    Google Scholar 

  3. P. Yu. Kikin, A. I. Pchelintsev, and E. E. Rusin, “Time shift of the points of melting and evaporation in ultrafine-grain aluminum alloy under laser heating,” Fiz. Khim. Obrab. Mater., No. 2, 50 – 53 (2009).

    Google Scholar 

  4. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Obtained by Severe Plastic Deformation [in Russian], Logos, Moscow (2000), 272 p.

    Google Scholar 

  5. I. N. Fridlyander, A. I. Pchelintsev, E. E. Rusin, and N. V. Zemlyakova, “Structure features and properties of aluminum alloy 1420,” Metalloved. Term. Obrab. Met., No. 7, 20 – 22 (1983).

    Google Scholar 

  6. P. Yu. Kikin, A. I. Pchelintsev, E. E. Rusin, and N. V. Zemlyakova, “Variation of the microstructure of ultrafine-grain aluminum alloys 1420 and 1421 under the action of pulse laser radiation,” Metalloved. Term. Obrab. Met., No. 7, 30 – 33 (2009).

    Google Scholar 

  7. F. V. Bunkin, N. A. Kirichenko, and V. S. Luk’yanchuk, “Thermochemical action of laser radiation,” Usp. Fiz. Nauk, 138(1), 57 – 85 (1982).

    Google Scholar 

  8. B. S. Bokshtein, Diffusion in Metals [in Russian], Metallurgiya, Moscow (1978), 248 p.

    Google Scholar 

  9. J. Benard (ed.), Oxidation of Metals [Russian translation], Metallurgiya, Moscow (1968).

    Google Scholar 

  10. N. Hanney, Solid-State Chemistry [Russian translation], Mir, Moscow (1971), 223 p.

    Google Scholar 

  11. I. N. Fridlyander, V. S. Sandler, T. I. Nikol’skaya, et al., “A study of the near-surface layer of aluminum alloy 1420,” Izv. Akad. Nauk SSSR, Metally, No. 2, 220 – 222 (1978).

  12. The Physics of Thin Films [Russian translation], Mir, Moscow (1973), 294 p.

  13. F. Kh. Mirzoev, V. Ya. Panchenko, and L. A. Shelepin, “Laser control of processes in a solid,” Usp. Fiz. Nauk., 166(1), 3 – 32 (1996).

    Article  CAS  Google Scholar 

  14. P. Yu. Kikin, A. I. Pchelintsev, and E. E. Rusin, “Effect of annealing of the time shift of the start of melting in submicrocrystalline aluminum alloy 1421 under laser effect,” Metalloved. Term. Obrab. Met., No. 12, 24 – 26 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 23 – 26, August, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikin, P.Y., Pchelintsev, A.I., Rusin, E.E. et al. Effect of low-energy pulse laser irradiation on the properties of ultrafine-grain aluminum alloy 1421. Met Sci Heat Treat 54, 398–401 (2012). https://doi.org/10.1007/s11041-012-9520-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-012-9520-5

Keywords

Navigation