Skip to main content

Advertisement

Log in

Expression of PiABP19, Picdc2 and PiSERK3 during induction of somatic embryogenesis in leaflets of Prunus incisa (Thunb.)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Somatic embryogenesis is a useful tool of plant breeding. In this context, a procedure for inducing somatic embryogenesis in Prunus incisa leaf explants had been previously developed. The original in vitro protocol relies on picloram treatments and exposure to darkness as inductive conditions, the best frequency of embryogenesis being obtained on the second leaf (F2) exposed to 4 μM picloram during 30 days. The morphological and biochemical changes observed during somatic embryogenesis occur in response to alterations in gene expression regulation patterns. A molecular study was conducted in order to provide deeper insight into the fundamental biological factors involved in the induction of this process using a gene candidate strategy and semi-quantitative reverse transcription polymerase chain reaction analysis. So far, no sequence data related to somatic embryogenesis has been available in cherry. In the present study, we cloned and sequenced cDNA fragments of putative genes encoding auxin-binding protein, cell cycle regulator and somatic embryogenesis receptor kinase. Time-course differential transcript accumulations were observed for all investigated genes in leaves or derived callus tissues during the observation period (first month of culture). Their possible involvement in the sequential steps of the embryogenic pathway (dedifferentiation, cell proliferation, differentiation through somatic embryogenesis) is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sharifi G, Ebrahimzadeh H, Ghareyazie B, Gharechahi J, Vatankhah E (2012) Identification of differentially accumulated proteins associated with embryogenic and nonembryogenic calli in saffron (Crocus sativus L.). Proteome Sci 10:1–15

    Article  Google Scholar 

  2. Pasternak T, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckeln H, Dudits D, Feher A (2002) The role of auxin, pH, and stress inactivation of embryogenic cell division in leaf protoplast-derived cells in alfalfa. Plant Physiol 129:1807–1819. doi:10.1104/pp.000810

    Article  PubMed  CAS  Google Scholar 

  3. Druart Ph (1999) Somatic embryogenesis in Prunus species. In: Gupta PK, Newton RJ, Mohain Jain S (eds) Somatic embryogenesis in woody plants. Kluwer Academic, Dordrecht, pp 215–235

    Chapter  Google Scholar 

  4. Cheong EJ, Pooler MR (2004) Factors affecting somatic embryogenesis in Prunus incisa cv. February pink. Plant Cell Rep 22:810–815. doi:10.1007/s00299-004-0771-5

    Article  PubMed  CAS  Google Scholar 

  5. Grossmann K (2000) Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci 5:506–508. doi:10.1016/S1360-1385(00)01791-X

    Article  PubMed  CAS  Google Scholar 

  6. Barro F, Martin A, Lazzeri PA, Barcelo P (1999) Medium optimization for efficient somatic embryogenesis and plant regeneration from immature inflorescences and immature scutella of elite cultivars of wheat, barley and tritordeum. Euphytica 108:161–167. doi:10.1023/A:1003676830857

    Article  Google Scholar 

  7. Sanchez-Romero C, Márquez-Martín B, Pliego-Alfaro F (2005) Somatic and zygotic embryogenesis in avocado. In: Mujib A, Samaj J (eds) Plant cell monographs. Springer, Berlin, pp 271–284

    Google Scholar 

  8. Gomes FLAF, Heredia FF, Silvia PB, Faco O, Campos FAP (2006) Somatic embryogenesis and plant regeneration in Opuntia ficus-indica (L.) Mill. (Cactaceae). Sci Hortic 108:15–21

    Article  CAS  Google Scholar 

  9. Steinmacher DA, Clement CR, Guerra MP (2007) Somatic embryogenesis from immature peach palm inflorescence explants: towards development of an efficient protocol. Plant Cell Tissue Organ Cult 89:15–22. doi:10.1007/s11240-007-9207-6

    Article  Google Scholar 

  10. He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ (2010) Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot 61:1567–1581. doi:10.1093/jxb/erq035

    Article  PubMed  CAS  Google Scholar 

  11. Napier RN, David KM, Perrot-Rechenmann C (2002) A short history of auxin-binding proteins. Plant Mol Biol 49:339–348. doi:10.1023/A:1015259130955

    Article  PubMed  CAS  Google Scholar 

  12. Chen JG, Shimomura S, Sitbon F, Stanberg G, Jones AM (2001) The role of auxin-binding protein 1 in the expansion of tobacco leaf cells. Plant J 28:607–617. doi:10.1046/j.1365-313x.2001.01152.x

    Article  PubMed  CAS  Google Scholar 

  13. David KM, Couch D, Braun N, Brown S, Grosclaude J (2007) The auxin-binding protein 1 is essential for the control of cell cycle. Plant J 50:197–206. doi:10.1111/j.1365-313X.2007.03038.x

    Article  PubMed  CAS  Google Scholar 

  14. Dudits D, Bögre L, Györgyey J (1995) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99:475–484

    Google Scholar 

  15. Hemerly AS, Ferreira P, Engler JA, Van Montagu MV, Engler G, Inzé D (1993) Cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5:1711–1723. doi:10.1105/tpc.5.12.1711

    PubMed  CAS  Google Scholar 

  16. Sun L, Wu Y, Su S, Liu H, Yang G (2012) Differential gene expression during somatic embryogenesis in the maize (Zea mays L.) inbred line H99. Plant Cell Tissue Organ Cult 109:271–286. doi:10.1007/s11240-011-0093-6

    Article  CAS  Google Scholar 

  17. Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    PubMed  CAS  Google Scholar 

  18. Stone JM, Walker JC (1995) Plant protein kinase families and signal transduction. Plant Physiol 108:451–457

    Article  PubMed  CAS  Google Scholar 

  19. Ma J, He Y, Wu C, Liu H, Hu Z, Sun G (2012) Cloning and molecular characterization of a SERK Gene transcriptionally induced during somatic embryogenesis in Ananas comosus cv. Shenwan. Plant Mol Biol Rep 30:195–203. doi:10.1007/s11105-011-0330-5

    Article  CAS  Google Scholar 

  20. Cueva A, Concia L, Cella R (2012) Molecular characterization of a Cyrtochilum loxense somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Cell Rep 31:1129–1139. doi:10.1007/s00299-012-1236-x

    Article  PubMed  CAS  Google Scholar 

  21. Belkhadir Y, Chory J (2006) Brassinosteroid signaling: a paradigm for steroid hormone signalling from the cell surface. Science 314:1410–1411. doi:10.1126/science.1134040

    Article  PubMed  CAS  Google Scholar 

  22. Clouse SD (2008) Brassinosteroid signaling. In: Bogre L, Beemster G (eds) Plant cell monographs. Springer, Berlin, pp 179–197

    Google Scholar 

  23. Aker J, De Vries SC (2008) Plasma membrane receptor complexes. Plant Physiol 147:1560–1564. doi:10.1104/pp.108.120501

    Article  PubMed  CAS  Google Scholar 

  24. Ben Mahmoud K, Elloumi N, Chakroun A, Jemmali A, Druart Ph (2011) In vitro picloram-induced somatic embryogenesis from leaflets of cherry (Prunus incisa Thunb.). J Life Sci 5:913–920

    Google Scholar 

  25. Druart Ph (2003) Micropropagation of apples (Malus sp.). In: Jain SM, Ishii K (eds) Micropropagation 2003. Kluwer Academic, The Netherlands, pp 433–463

    Google Scholar 

  26. Chang S, Pruyear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116. doi:10.1007/BF02670468

    Article  CAS  Google Scholar 

  27. Ohmiya A, Tanaka Y, Kadowaki K, Hayashi T (1998) Cloning of genes encoding auxin-binding proteins (ABP19/20) from peach: significant peptide sequence similarity with germin-like proteins. Plant Cell Physiol 39:492–499

    Article  PubMed  CAS  Google Scholar 

  28. El-Sharkawy I, Mila I, Bouzayen M, Jayasankar S (2010) Regulation of two germin-like protein genes during plum fruit development. J Exp Bot 61:1761–1770. doi:10.1093/jxb/erq043

    Article  PubMed  CAS  Google Scholar 

  29. Dunwell JM, Gibbing JG, Mahmood T, Naqui S (2008) Germin and germin-like proteins: evolution, structure and function. Crit Rev Plant Sci 27:342–375. doi:10.1080/07352680802333938

    Article  CAS  Google Scholar 

  30. Jones AM, Herman EM (1993) KDEL-containing auxin-binding protein is secreted to the plasma membrane and cell wall. Plant Physiol 101:595–606. doi:10.1104/pp.101.2.595

    PubMed  CAS  Google Scholar 

  31. Tromas A, Braun N, Muller P, Khodus T, Paponov IA, Palme A, Ljung K, Lee JY, Benfey P, Murray JAH, Scheres B, Perrot-Rechenmann C (2009) The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth. PLoS ONE 4:1–11. doi:10.1371/journal.pone.0006648

    Article  Google Scholar 

  32. Cui X, Fan B, Scholz J, Chen Z (2007) Roles of Arabidopsis cyclin-dependent kinase C complexes in cauliflower mosaic virus infection, plant growth and development. Plant Cell 19:1388–1402. doi:10.1105/tpc.107.051375

    Article  PubMed  CAS  Google Scholar 

  33. Ben Mahmoud K (2012) Etude de l’aptitude à l’embryogenèse somatique du porte-greffe de cerisier CAB 6P (Prunus cerasus L.) et des mécanismes histologiques et moléculaires associés. PhD Thesis, National Agronomic Institute of Tunisia

  34. Shaul O, Mantagu MV, Inze D (1996) Cell cycle control in Arabidopsis. Ann Bot 78:283–288

    Article  CAS  Google Scholar 

  35. Zhang S, Williams-Carrier R, Jackson D, Lemaux PG (1998) Expression of CDC2Zm and KNOTTED1 during in vitro axillary shoot meristem proliferation and adventitious shoot meristem formation in maize (Zea mays L.) and barely (Hordeum vulgare L.). Planta 204:542–549. doi:10.1007/s004250050289

    Article  PubMed  CAS  Google Scholar 

  36. Joubès J, Lemaire-Chamley M, Delmas F, Walter J, Hernould M, Mouras A, Raymond P, Chevalier C (2001) A new C-type cyclin-dependent kinase from tomato expressed in dividing tissues does not interact with mitotic and G1 cyclins. Plant Physiol 126:1403–1415. doi:10.1104/pp.126.4.1403

    Article  PubMed  Google Scholar 

  37. Baudino S, Hansen S, Brettschneider R, Hecht VFG, Dresselhaus T, Lorz H, Dumas C, Rogowsky PM (2001) Molecular characterization of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta 213:1–10. doi:10.1007/s004250000471

    Article  PubMed  CAS  Google Scholar 

  38. De Oliveira Santos M, Romano E, Yotoko KSC, Tinoco MLP, Dias BBA, Araga FJL (2005) Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci 168:723–729. doi:10.1016/j.plantsci.2004.10.004

    Article  Google Scholar 

  39. Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, De Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816. doi:10.1104/pp.010324

    Article  PubMed  CAS  Google Scholar 

  40. Somleva MN, Schmidt EDL, de Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19:718–726. doi:10.1007/s002999900169

    Article  CAS  Google Scholar 

  41. Huang X, Lu X-Y, Zhao J-T, Chen J-K, Dai X-M, Xiao W, Chen Y-P, Chen Y-F, Huang X-L (2010) MaSERK1 gene expression associated with somatic embryogenic competence and disease resistance response in banana (Musa spp.). Plant Mol Biol Rep 28:309–316. doi:10.1007/s11105-009-0150-z

    Article  CAS  Google Scholar 

  42. Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230. doi:10.1104/pp.103.020917

    Article  PubMed  CAS  Google Scholar 

  43. Zakizadeh H, Stummann BM, Lütken H, Müller R (2010) Isolation and characterization of four somatic embryogenesis receptor-like kinase (RhSERK) genes from miniature potted rose (Rosa hybrida cv. Linda). Plant Cell Tissue Organ Cult 101:331–338. doi:10.1007/s11240-010-9693-9

    Article  CAS  Google Scholar 

  44. Singla B, Khurana JP, Khurana P (2008) Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. Plant Cell Rep 27:833–843. doi:10.1007/s00299-008-0505-1

    Article  PubMed  CAS  Google Scholar 

  45. Tucker MR, Araújo ACG, Paech NA, Hecht V, Schmidt EDL, Rossell JB, de Vries SC, Koltunow AMG (2003) Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways. Plant Cell 15:1524–1537. doi:10.1105/tpc.011742

    Article  PubMed  CAS  Google Scholar 

  46. Thomas C, Meyer D, Himber C, Steinmetz A (2004) Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem 42:35–42. doi:10.1016/j.plaphy.2003.10.008

    Article  PubMed  CAS  Google Scholar 

  47. Albertini E, Marconi G, Reale L, Barcaccia G, Porceddes A, Ferranti F, Falcinelli M (2005) SERK and APOSTART. Candidate genes for apomixis in Poa pratensis. Plant Physiol 138:2185–2194. doi:10.1104/pp.105.062059

    Article  PubMed  CAS  Google Scholar 

  48. Sharma SK, Millam S, Hein I, Bryan GJ (2008) Cloning and molecular characterisation of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis. Planta 228:319–330. doi:10.1007/s00425-008-0739-8

    Article  PubMed  CAS  Google Scholar 

  49. Shimada T, Hirabayashi T, Endo T, Fujii H, Kita M, Omura M (2005) Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CiSERK1) from Citrus unshiu Marc. Sci Hortic 103:233–238. doi:10.1016/j.scienta.2004.07.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was carried out with financial support from CGRI (Commissariat Générale des Relations Internationales), Brussels (Belgium). The authors would like to thank Christophe Leroy and Ghassen Abid for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaouther Ben Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Mahmoud, K., Delporte, F., Muhovski, Y. et al. Expression of PiABP19, Picdc2 and PiSERK3 during induction of somatic embryogenesis in leaflets of Prunus incisa (Thunb.). Mol Biol Rep 40, 1569–1577 (2013). https://doi.org/10.1007/s11033-012-2205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2205-8

Keywords

Navigation