Skip to main content

Advertisement

Log in

Deletion of RBP-J in adult mice leads to the onset of aortic valve degenerative diseases

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Transcription factor RBP-J-mediated Notch signaling has been implicated in several inherited cardiovascular diseases including aortic valve diseases (AVD). But whether Notch signal plays a role in AVD in adults has been unclear. This study aims to test whether the deletion of RBP-J in adult mice would lead to AVD and to investigate the underlying mechanisms. Cre-LoxP-mediated gene deletion was employed to disrupt Notch signal in adult mice. Immunofluorescence and electron microscope observations showed that deletion of RBP-J in adult mice led to early morphological changes of AVD. The size of aortic valve was enlarged. The endothelial homeostasis was perturbed, probably due to the up-regulation of VEGFR2. The endothelial cells exhibited increased proliferation and loose endothelial junctions. The valvular mesenchyme displayed significant fibrosis, consistent with the up-regulation of TGF-β1 and activation of endothelial-mesenchymal transition. We observed melanin-producing cells in aortic valves. The number of melanin-producing cells increased significantly, and their location changed from the mesenchyme to subendothelial layer of valve cusps in RBP-J deficient mice. These results suggest that RBP-J-mediated Notch signaling in aortic valves may be critically involved in valve homeostasis and valve diseases as well. These findings will be helpful for the understanding of the molecular mechanisms of AVD in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anees M, Asghar A, Mahmood KT (2010) Management of valvular heart diseases. J Pharm Sci Res 2(11):740–744

    Google Scholar 

  2. Poggianti E, Venneri L, Chubuchny V, Jambrik Z, Baroncini LA, Picano E (2003) Aortic valve sclerosis is associated with systemic endothelial dysfunction. J Am Coll Cardiol 41(1):136–141

    Article  PubMed  Google Scholar 

  3. Leask RL, Jain N, Butany J (2003) Endothelium and valvular diseases of the heart. Microsc Res Tech 60(2):129–137

    Article  PubMed  Google Scholar 

  4. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776

    Article  PubMed  CAS  Google Scholar 

  5. Kato H, Taniguchi Y, Kurooka H, Minoguchi S, Sakai T, Nomura-Okazaki S, Tamura K, Honjo T (1997) Involvement of RBP-J in biological functions of mouse Notch1 and its derivatives. Development 124(20):4133–4141

    PubMed  CAS  Google Scholar 

  6. Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T (2004) Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev 18(20):2469–2473

    Article  PubMed  CAS  Google Scholar 

  7. Dou GR, Wang YC, Hu XB, Hou LH, Wang CM, Xu JF, Wang YS, Liang YM, Yao LB, Yang AG, Han H (2008) RBP-J, the transcription factor downstream of Notch receptors, is essential for the maintenance of vascular homeostasis in adult mice. FASEB J 22(5):1606–1617

    Article  PubMed  CAS  Google Scholar 

  8. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Díez J, Aranda S, Palomo S, McCormick F, Izpisúa-Belmonte JC, de la Pompa JL (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18(1):99–115

    Article  PubMed  CAS  Google Scholar 

  9. Niessen K, Karsan A (2008) Notch signaling in cardiac development. Circ Res 102(10):1169–1181

    Article  PubMed  CAS  Google Scholar 

  10. Kamath BM, Kathleen M, David LA, Piccoli A (2010) Fibrocystic alagille syndrome and JAGGED1/NOTCH Sequence. Clin Gastroenterol: Fibrocystic Dis Liver Part 3:159–178

    Article  Google Scholar 

  11. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437(7056):270–274

    Article  PubMed  CAS  Google Scholar 

  12. Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O’Brien KD (1994) Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90(2):844–853

    PubMed  CAS  Google Scholar 

  13. Tanaka K, Sata M, Fukuda D, Suematsu Y, Motomura N, Takamoto S, Hirata Y, Nagai R (2005) Age-associated aortic stenosis in apolipoprotein E-deficient mice. J Am Coll Cardiol 46(1):134–141

    Article  PubMed  CAS  Google Scholar 

  14. Nigam V, Srivastava D (2009) Notch1 represses osteogenic pathways in aortic valve cells. J Mol Cell Cardiol 47(6):828–834

    Article  PubMed  CAS  Google Scholar 

  15. Han H, Tanigaki K, Yamamoto N, Kuroda K, Yoshimoto M, Nakahata T, Ikuta K, Honjo T (2002) Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int Immunol 14(6):637–645

    Article  PubMed  CAS  Google Scholar 

  16. Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269(5229):1427–1429

    Article  PubMed  CAS  Google Scholar 

  17. Guerraty M, Mohler ER (2007) Models of aortic valve calcification. J Invest Med 55(6):278–283

    Article  Google Scholar 

  18. Hakuno D, Kimura N, Yoshioka M, Fukuda K (2009) Molecular mechanisms underlying the onset of degenerative aortic valve disease. J Mol Med 87(1):17–24

    Article  PubMed  CAS  Google Scholar 

  19. Sacks MS, Yoganathan AP (2007) Heart valve function: a biomechanical perspective. Phil Trans R Soc B 362(1484):1369–1391

    Article  PubMed  Google Scholar 

  20. Vrljicak P, Chang AC, Morozova O, Wederell ED, Niessen K, Marra MA, Karsan A, Hoodless PA (2010) Genomic analysis distinguishes phases of early development of the mouse atrio-ventricular canal. Physiol Genomics 40(3):150–157

    Article  PubMed  CAS  Google Scholar 

  21. Warren BA, Yong JL (1997) Calcification of the aortic valve: its progression and grading. Pathology 29(4):360–368

    Article  PubMed  CAS  Google Scholar 

  22. Yang J, Liu Y (2001) Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol 159(4):1465–1475

    Article  PubMed  CAS  Google Scholar 

  23. Sivasankaran B, Degen M, Ghaffari A, Hegi ME, Hamou MF, Ionescu MC, Zweifel C, Tolnay M, Wasner M, Mergenthaler S, Miserez AR, Kiss R, Lino MM, Merlo A, Chiquet-Ehrismann R, Boulay JL (2009) Tenascin-C is a novel RBPJ kappa-induced target gene for Notch signaling in gliomas. Cancer Res 69(2):458–465

    Article  PubMed  CAS  Google Scholar 

  24. High FA, Epstein JA (2008) The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet 9(1):49–61

    Article  PubMed  CAS  Google Scholar 

  25. Bray SJ (2006) Notch signaling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9):678–689

    Article  PubMed  CAS  Google Scholar 

  26. Butcher JT, Nerem RM (2007) Valvular endothelial cells and the mechanoregulation of valvular pathology. Philos Trans R Soc Lond B Biol Sci 362(1484):1445–1457

    Article  PubMed  CAS  Google Scholar 

  27. Paruchuri S, Yang JH, Aikawa E, Melero-Martin JM, Khan ZA, Loukogeorgakis S, Schoen FJ, Bischoff J (2006) Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-β2. Circ Res 99(8):861–869

    Article  PubMed  CAS  Google Scholar 

  28. Beckmann E, Grau JB, Sainger R, Poggio P, Ferrari G (2010) Insights into the use of biomarkers in calcific aortic valve disease. J Heart Valve Dis 19(4):441–452

    PubMed  Google Scholar 

  29. Chenevard R, Bechir M, Hurlimann D, Ruschitzka F, Turina J, Luscher TF, Noll G (2006) Persistent endothelial dysfunction in calcified aortic stenosis beyond valve replacement surgery. Heart 92(12):1862–1863

    Article  PubMed  CAS  Google Scholar 

  30. Shworak NW (2004) Angiogenic modulators in valve development and disease: does valvular disease recapitulate developmental signaling pathways? Curr Opin Cardiol 19(2):140–146

    Article  PubMed  Google Scholar 

  31. Tkatchenko TV, Moreno-Rodriguez RA, Conway SJ, Molkentin JD, Markwald RR, Tkatchenko AV (2009) Lack of periostin leads to suppression of Notch1 signaling and calcific aortic valve disease. Physiol Genomics 39(3):160–168

    Article  PubMed  CAS  Google Scholar 

  32. Díez M, Musri MM, Ferrer E, Barberà JA, Peinado VI (2010) Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGF{beta}RI. Cardiovasc Res 88(3):502–511

    Article  PubMed  Google Scholar 

  33. Azuma K, Ichimura K, Mita T, Nakayama S, Jin WL, Hirose T, Fujitani Y, Sumiyoshi K, Shimada K, Daida H, Sakai T, Mitsumata M, Kawamori R, Watada H (2009) Presence of α-smooth muscle actin-positive endothelial cells in the luminal surface of adult aorta. Biochem Biophys Res Commun 380(3):620–626

    Article  PubMed  CAS  Google Scholar 

  34. Armstrong EJ, Bischoff J (2004) Heart valve development: endothelial cell signaling and differentiation. Circ Res 95(5):459–470

    Article  PubMed  CAS  Google Scholar 

  35. Ward EJ, Shcherbata HR, Reynolds SH, Fischer KA, Hatfield SD, Ruohola-Baker H (2006) Stem cells signal to the niche through the Notch pathway in the Drosophila ovary. Curr Biol 16(23):2352–2358

    Article  PubMed  CAS  Google Scholar 

  36. Brito FC (2008) Melanocytes in the developing and adult atrioventricular valves of the murine heart. ProQuest ETD Collection for FIU Paper AAI3353577

  37. Balani K, Brito FC, Kos L, Agarwal A (2009) Melanocyte pigmentation stiffens murine cardiac tricuspid valve leaflet. J R Soc Interface 6(40):1097–1102

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank K. Rajewsky for Mx-Cre transgenic mice. This work was supported by grants from the National Natural Science Foundation (30600544, 30830067) and the Ministry of Science and Technology of China (2009CB521706).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ding-Hua Yi or Hua Han.

Additional information

Z. Li, L. Feng, C.-M. Wang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Feng, L., Wang, CM. et al. Deletion of RBP-J in adult mice leads to the onset of aortic valve degenerative diseases. Mol Biol Rep 39, 3837–3845 (2012). https://doi.org/10.1007/s11033-011-1162-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1162-y

Keywords

Navigation