Skip to main content
Log in

Retinoic acid promotes neural conversion of mouse embryonic stem cells in adherent monoculture

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Retinoic acid (RA) plays multiple roles in the nervous system, including induction of neural differentiation, axon outgrowth and neural patterning. Previously, RA for neural differentiation of embryonic stem (ES) cells always relies on embryoid bodies (EBs) formation. Here we report an in vitro adherent monoculture system to induce mouse ES cells into neural cells accompanied with RA. RA (1 μM) treatment, during initial 2 days of differentiation, can enhance the expression of neural markers, such as Nestin, Tuj1 and MAP2, and result in an earlier neural differentiation of ES cells. Furthermore, RA promotes a significant increase in neurite elongation of ES-derived neurons. Our study also implies that RA induced to express Wnt antagonist Dickkopf-1 (Dkk-1) for neural differentiation. However, the mechanisms of RA triggering neural induction remain to be determined. Our simple and efficient strategy is proposed to provide a basis for studying RA signaling pathways in neural differentiation in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Dkk-1:

Dickkopf-1

EB:

Embryoid body

ES:

Embryonic stem

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

LIF:

Leukemia inhibitory factor

MAP2:

Microtubule-associated protein 2

MEF:

Embryonic fibroblast

NeuN:

Neuronal nuclei

Oct4:

Octamer-4

Pax6:

Paired box gene 6

RA:

Retinoic acid

Sfrp2:

Secreted frizzled-related protein-2

Sox1:

Sex determining region Y-box 1

Sox2:

Sex determining region Y-box 2

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  PubMed  CAS  Google Scholar 

  2. Martin GR (1981) Isolation of a pluripotent cell-line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem-cells. Proc Natl Acad Sci Biol 78(12):7634–7638

    Article  CAS  Google Scholar 

  3. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem-cells express neuronal properties in vitro. Dev Biol 168(2):342–357

    Article  PubMed  CAS  Google Scholar 

  4. Li M, Pevny L, Lovell-Badge R, Smith A (1998) Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol 8(17):971–974

    Article  PubMed  CAS  Google Scholar 

  5. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa S, Sasai Y (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28(1):31–40

    Article  PubMed  CAS  Google Scholar 

  6. Lee H, Al Shamy G, Elkabetz Y, Schofield CM, Harrsion NL, Panagiotakos G, Socci ND, Tabar V, Studer L (2007) Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 25(8):1931–1939

    Article  PubMed  CAS  Google Scholar 

  7. Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21(2):183–186

    Article  PubMed  CAS  Google Scholar 

  8. Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8(10):755–765

    Article  PubMed  CAS  Google Scholar 

  9. Jacobs S, Lie DC, DeCicco KL, Shi Y, DeLuca LM, Gage FH, Evans RM (2006) Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc Natl Acad Sci USA 103(10):3902–3907

    Article  PubMed  CAS  Google Scholar 

  10. Corcoran J, So PL, Maden M (2002) Absence of retinoids can induce motoneuron disease in the adult rat and a retinoid defect is present in motoneuron disease patients. J Cell Sci 115(24):4735–4741

    Article  PubMed  CAS  Google Scholar 

  11. Etchamendy N, Enderlin V, Marighetto A, Pallet V, Higueret P, Jaffard R (2003) Vitamin A deficiency and relational memory deficit in adult mice: relationships with changes in brain retinoid signalling. Behav Brain Res 145(1–2):37–49

    Article  PubMed  CAS  Google Scholar 

  12. Fraichard A, Chassande O, Bilbaut G, Dehay C, Savatier P, Samarut J (1995) In vitro differentiation of embryonic stem-cells into glial-cells and functional-neurons. J Cell Sci 108:3181–3188

    PubMed  CAS  Google Scholar 

  13. Aubert J, Dunstan H, Chambers I, Smith A (2002) Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat Biotechnol 20(12):1240–1245

    Article  PubMed  CAS  Google Scholar 

  14. Verani R, Cappuccio I, Spinsanti P, Gradini R, Caruso A, Magnotti MC, Motolese M, Nicoletti F, Melchiorri D (2007) Expression of the Wnt inhibitor Dickkopf-1 is required for the induction of neural markers in mouse embryonic stem cells differentiating in response to retinoic acid. J Neurochem 100(1):242–250

    Article  PubMed  CAS  Google Scholar 

  15. Abranches E, Silva M, Pradier L, Schulz H, Hummel O, Henrique D, Bekman E (2009) Neural Differentiation of Embryonic Stem Cells In Vitro: A Road Map to Neurogenesis in the Embryo. Plos One 4(7):e6286. doi:10.1371/Journal.Pone.0006286

    Article  PubMed  Google Scholar 

  16. Siegenthaler JA, Ashique AM, Zarbalis K, Patterson KP, Hecht JH, Kane MA, Folias AE, Choe Y, May SR, Kume T, Napoli JL, Peterson AS, Pleasure SJ (2009) Retinoic acid from the meninges regulates cortical neuron generation. Cell 139(3):597–609. doi:10.1016/j.cell.2009.10.004

    Article  PubMed  CAS  Google Scholar 

  17. Maden M (2002) Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci 3(11):843–853. doi:10.1038/Nrn963

    Article  PubMed  CAS  Google Scholar 

  18. Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, Watanabe Y, Mizuseki K, Sasai Y (2005) Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci 8(3):288–296. doi:10.1038/nn1402

    Article  PubMed  CAS  Google Scholar 

  19. Pachernik J, Bryja V, Esner M, Kubala L, Dvorak P, Hampl A (2005) Neural differentiation of pluripotent mouse embryonal carcinoma cells by retinoic acid: inhibitory effect of serum. Physiol Res 54(1):115–122

    PubMed  CAS  Google Scholar 

  20. Pachernik J, Esner M, Bryja V, Dvorak P, Hampl A (2002) Neural differentiation of mouse embryonic stem cells grown in monolayer. Reprod Nutr Dev 42(4):317–326

    Article  PubMed  CAS  Google Scholar 

  21. Plachta N, Bibel M, Tucker KL, Barde YA (2004) Developmental potential of defined neural progenitors derived from mouse embryonic stem cells. Development 131(21):5449–5456

    Article  PubMed  CAS  Google Scholar 

  22. Dhara SK, Stice SL (2008) Neural differentiation of human embryonic stem cells. J Cell Biochem 105(3):633–640

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Duanqing Pei for kindly providing us with mouse ES cells R1. This study was supported by the National Basic Research Program of China (973 program, 2007CB947804), NSFC-Guangdong Joint Fund (U0972001/L02), National Natural Science Foundation of China (30700213/C090204) and Natural Science Foundation of Guangdong Province, China (07007215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Sheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 53 kb)

11033_2011_800_MOESM2_ESM.tif

Figure S1. Images of immunostaining for neural marker Sox1, Pax6, Nestin, Tuj1 and NeuN evaluate neural conversion from mouse ES cells in N2B27 with different concentration of RA after 6 days of differentiation. RA at a concentration of 10−6 is best for cell survival and neural conversion. Scale bar = 100 μm. (TIFF 1482 kb)

11033_2011_800_MOESM3_ESM.tif

Figure S2. The expression of pluripotency gene Oct4 and neural genes Sox1, Pax6, Nestin, Tuj1 and MAP2 changed in RA-N2B27 compare with N2B27 analyzed by quantitative real-time PCR. (TIFF 73 kb)

11033_2011_800_MOESM4_ESM.tif

Figure S3. Densitometry analysis shows expression level of pluripotency gene Oct4 and neural genes Sox1, Tuj1 and NeuN in both RA-N2B27 and N2B27 culture system. (TIFF 92 kb)

11033_2011_800_MOESM5_ESM.tif

Figure S4. The expression of Wnt antagonist Dkk-1 in RA-N2B27 compare with N2B27 analyzed by quantitative real-time PCR. (TIFF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Wang, H., Liang, T. et al. Retinoic acid promotes neural conversion of mouse embryonic stem cells in adherent monoculture. Mol Biol Rep 39, 789–795 (2012). https://doi.org/10.1007/s11033-011-0800-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0800-8

Keywords

Navigation