Skip to main content
Log in

Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dunaliella salina has been exploited as a new type of bioreactor due to its unique advantages. However, this bioreactor application was restricted for absence of a high-efficiency and stable transformation method at present. In the present study, the cells of D. salina were transformed by glass beads. The results of histochemical staining revealed that the GUS gene was successfully expressed in the positive transformants, and PCR and PCR-Southern blot analysis further demonstrated that the bar gene was integrated into the D. salina genome. Moreover, the three transformation methods, including glass beads, bombardment particle and electroporation, were compared for screening a high-efficiency transformation method for gene engineering of D. salina. The results showed that transformation efficiency of the glass beads was the highest, approximately 102 transformants/μg DNA. It is concluded that the established glass beads method has been demonstrated to be an optimal transformation way for D. salina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PEG:

Polyethylene glycol

Nos:

Nopaline synthase gene

PPT:

Phosphinothricin

GUS:

Beta-glucuronidase

References

  1. Xue LX, Pan WD, Jiang GZ, Wang JR (2006) Transgenic Dunuliella salina as a bioreactor. Patent No: US 7081567B2

  2. Ben-Amotz A, Sussman I, Avron M (1982) Glycerol production by Dunaliella. Experientia 38:49–52. doi:10.1007/BF01944527

    Article  CAS  Google Scholar 

  3. Avron M (1986) The osmotic components of halotolerant algae. Trends Biochem Sci 11:5–6. doi:10.1016/0968-0004(86)90218-5

    Article  CAS  Google Scholar 

  4. Sadka A, Himmelhoch S, Zamir A (1991) A 150 Kilodalton cell surface protein is induced by salt in the halotolerant green alga Dunaliella salina. Plant Physiol 95:822–831

    Article  PubMed  CAS  Google Scholar 

  5. Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerent alga Dunaliella. Trends Biotechnol 8:121–126. doi:10.1016/0167-7799(90)90152-N

    Article  CAS  Google Scholar 

  6. Ben-Amotz A, Shaish A, Avron M (1991) The biotechnology of cultivating Dunaliella for production of β-Carotene rich algae. Bioresour Technol 38:233–235. doi:10.1016/0960-8524(91)90160-L

    Article  CAS  Google Scholar 

  7. Leach G, Oliveira G, Morais R (1998) Spray-drying of Dunaliella salina to produce a β-Carotene rich power. J Ind Microbiol Biotechnol 20:82–85. doi:10.1038/sj.jim.2900485

    Article  CAS  Google Scholar 

  8. Geng DG, Wang YQ, Wang P, Li WB, Sun YR (2003) Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J Appl Phycol 15:451–456. doi:10.1023/B:JAPH.0000004298.89183.e5

    Article  CAS  Google Scholar 

  9. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538. doi:10.1126/science.2897716

    Article  PubMed  CAS  Google Scholar 

  10. Brown LE, Sprecher SL, Keller LR (1991) Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol 11:2328–2332

    PubMed  CAS  Google Scholar 

  11. Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232. doi:10.1073/pnas.87.3.1228

    Article  PubMed  CAS  Google Scholar 

  12. Dunahay TG (1993) Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechnology 15:452–460

    CAS  Google Scholar 

  13. Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738. doi:10.1016/j.plantsci.2003.11.012

    Article  CAS  Google Scholar 

  14. Geng DG, Han Y, Wang YQ, Wang P, Zhang LM, Li WB et al (2004) Construction of a system for the stable expression of foreign genes in Dunaliella salina. Acta Bot Sin 46:342–346

    CAS  Google Scholar 

  15. Sun Y, Yang Z, Gao X, Li Q, Zhang Q, Xu Z (2005) Expression of foreign genes in Dunaliella by electroporation. Mol Biotechnol 30:185–192. doi:10.1385/MB:30:3:185

    Article  PubMed  CAS  Google Scholar 

  16. Tan CP, Qin S, Zhang Q, Jiang P, Zhao GQ (2005) Establishment of a micro-particle bombardment transformation system for Dunaliella salina. Microbiology 43:361–365

    CAS  Google Scholar 

  17. Costanzo MC, Fox TD (1988) Transformation of yeast by agitation with glass beads. Genetics 120:667–670

    PubMed  CAS  Google Scholar 

  18. Xie H, Xu PR, Jia YL, Li J, Lu ZM, Xue LX (2007) Cloning and heterologous expression of nitrate reductase genes from Dunaliella salina. J Appl Phycol 19:497–504. doi:10.1007/s10811-007-9162-y

    Article  CAS  Google Scholar 

  19. Ben-Amotz A, Avron M (1983) Accumulation of metabolites by halotolerent algae and its industrial potential. Annu Rev Microbiol 37:95–119. doi:10.1146/annurev.mi.37.100183.000523

    Article  PubMed  CAS  Google Scholar 

  20. Jefferson RA, Knvanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  21. Chen Y, Wang Y, Sun Y, Zhang L, Li W (2001) Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr Genet 39:365–370. doi:10.1007/s002940100205

    Article  PubMed  CAS  Google Scholar 

  22. Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148:1821–1828

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from International Science and Technology Cooperation Program of The Ministry of Science and Technology of P.R. China (No. 2007DFA01240), Special Foundation for Training of Doctoral Students from Institutions of Higher Learning, Ministry of Education of P.R. China (No. 20050459007) and National Natural Science Foundation of China (No. 30600006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lexun Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, S., Xue, L., Liu, H. et al. Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Mol Biol Rep 36, 1433–1439 (2009). https://doi.org/10.1007/s11033-008-9333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9333-1

Keywords

Navigation