Skip to main content
Log in

Expression of the Arabidopsis AtMYB44 gene confers drought/salt-stress tolerance in transgenic soybean

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

AtMYB44, a member of the subgroup 22 R2R3 MYB transcription factors, positively regulates abscisic acid signaling to induce stomatal closure, thus conferring drought/salt-stress tolerance in Arabidopsis thaliana. In this study, AtMYB44 was transformed into soybean [Glycine max (L.) Merrill] using the cotyledonary-node method. The resulting homozygous lines were shorter than the non-transgenic controls (Bert) throughout the growth period when grown in a greenhouse. The transgenic soybeans exhibited significantly enhanced drought/salt-stress tolerance, as observed in Arabidopsis. In field cultivation studies, the transgenic soybean plants showed reduced growth, but much higher yields upon seed harvest, demonstrating improved environmental stress tolerance. The amino acid and fatty acid compositions were not significantly altered in seeds harvested from the transgenic lines. These results suggest that the interaction of AtMYB44 with specific sequences in target gene promoters and/or specific proteins activates a tolerance mechanism that is conserved in Arabidopsis and soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AOAC (1980) Official methods of analysis, 13th edn. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  • Carpenter CD, Simon AE (1998) Preparation of RNA. Methods Mol Biol 82:85–89

    PubMed  CAS  Google Scholar 

  • Cheong YH, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    Article  PubMed  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Howe KM, Watson RJ (1991) Nucleotide preferences in sequence-specific recognition of DNA by c-myc protein. Nucleic Acids Res 19:3913–3919

    Article  PubMed  CAS  Google Scholar 

  • Jeong N, Moon J-K, Kim HS, Kim C-G, Jeong S-C (2011) Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theor Appl Genet 122:865–874

    Article  PubMed  Google Scholar 

  • Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585

    Article  PubMed  CAS  Google Scholar 

  • Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong J-J (2008) Overexpression of AtMYB44 enhances stomata closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635

    Article  PubMed  CAS  Google Scholar 

  • Kamei A, Seki M, Umezawa T, Ishida J, Satou M, Akiyama K, Zhu J-K, Shinozaki K (2005) Analysis of gene expression profiles in Arabidopsis salt overly sensitive mutants sos2–1 and sos3–1. Plant Cell Environ 28:1267–1275

    Article  CAS  Google Scholar 

  • Kang J-Y, Choi H-I, Im M-Y, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kirik V, Kölle K, Miséra S, Bäumlein H (1998) Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants. Plant Mol Biol 37:819–827

    Article  PubMed  CAS  Google Scholar 

  • Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B (1998) Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J 16:263–276

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Zou H-F, Wang H-W, Zhang W-K, Ma B, Zhang J-S, Chen S-Y (2008) Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res 18:1047–1060

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Sun N, Liu X, Jiao Y, Zhao H, Deng XW (2005) Organ-specific expression of Arabidopsis genome during development. Plant Physiol 138:80–91

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Paz-Ares J (1997) MYB transcription factors in plants. Trends Genet 13:67–73

    Article  PubMed  CAS  Google Scholar 

  • Miyake K, Ito T, Senda M, Ishikawa R, Harada T, Niizeki M, Akada S (2003) Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions. Plant Mol Biol 53:237–245

    Article  PubMed  CAS  Google Scholar 

  • Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura Y (1994) Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 79:639–648

    Article  PubMed  CAS  Google Scholar 

  • Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735

    PubMed  CAS  Google Scholar 

  • Peters CWB, Sippel AE, Vingron M, Klempnauer K-H (1987) Drosophila and vertebrate myb proteins share two conserved regions, one of which functions as a DNA-binding domain. EMBO J 6:3085–3090

    PubMed  CAS  Google Scholar 

  • Romero I, Fuertes A, Benito MJ, Malpica JM, Leyva A, Paz-Ares J (1998) More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. Plant J 14:273–284

    Article  PubMed  CAS  Google Scholar 

  • Rosinsky JA, Atchley WR (1998) Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin. J Mol Evol 46:74–83

    Article  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  PubMed  CAS  Google Scholar 

  • Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, Schachtman DP (2007) The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19:2440–2453

    Article  PubMed  CAS  Google Scholar 

  • Stober-Grässer U, Brydolf B, Bin X, Grässer F, Firtel RA, Lipsick JS (1992) The Myb DNA-binding domain is highly conserved in Dictyostelium discoideum. Oncogene 7:589–596

    PubMed  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  PubMed  CAS  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S, Li Z, Xiaohui D, Jingchu L, Xing-Wang D, Zhangliang C, Hongya G, Li-Jia Q (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Suk Hoo Yoon and Jin-Bong Hwang of the Korea Food Research Institute for technical advice on the chemical composition analyses. This research was supported by the Korean Ministry of Education, Science and Technology through a grant from the Crop Functional Genomics Center (CG2142) and the Basic Science Research Program of the National Research Foundation of Korea (NRF, grant number 2010-0025636). Graduate fellowships through the Brain Korea 21 Project are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chung Ho Kim or Jong-Joo Cheong.

Additional information

C. M. Donovan, retired.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, J.S., Sohn, H.B., Noh, K. et al. Expression of the Arabidopsis AtMYB44 gene confers drought/salt-stress tolerance in transgenic soybean. Mol Breeding 29, 601–608 (2012). https://doi.org/10.1007/s11032-011-9576-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9576-8

Keywords

Navigation