Skip to main content
Log in

Unified theory of structures based on micropolar elasticity

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper intends to establish a unified theory of structures based on the micropolar elasticity (ME). ME allows taking into consideration the microstructure of the material, through the adoption of four additional material parameters. In this way, the size-effects of the structure can be caught. The proposed model is developed in the domain of the Carrera unified formulation (CUF), according to which theories of structures can degenerate into unknown kinematics that makes use of an arbitrary expansion of the generalized variables. CUF is a hierarchical formulation that considers the order of the structural model as input of the analysis, so that no specific approximation and manipulation is needed to implement refined theories. Different types of structures have been analyzed in the present work, and the results are compared and validated with benchmarks from the literature. The effects of the new material parameters are addressed too, along with the capability of the proposed model to deal with size-effects and high-order structural behaviors. Finally, stress analysis is detailed to further highlight the differences between micropolar and classical elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Euler L (1744) De Curvis Elasticis, Additamentum I to his Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes. Lausanne and Geneva

  2. Timoshenko SP (1922) On the transverse vibrations of bars of uniform cross-section. Lond Edinb Dublin Philos Mag J Sci 43(253):125–131

    Article  Google Scholar 

  3. Coulomb CA (1784) Recherches théoriques et expérimentales sur la force de torsion et sur l’élasticité des fils de métal. Histoire de l’Académie Royale des Sciences, pp 229–269

  4. de Saint-Venant B (1855) Mémoire sur la torsion des prismes. Mémoires des Savants étrangers 14:233–560

    Google Scholar 

  5. Kennedy TC (1999) Modeling failure in notched plates with micropolar strain softening. Compos Struct 44(1):71–79

    Article  Google Scholar 

  6. Xiaodong L, Bhushan B, Takashima K, Baek C-W, Kim Y-K (2003) Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97(1–4):481–494

    Google Scholar 

  7. McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15(5):1060

    Article  Google Scholar 

  8. Lam D, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    Article  ADS  MATH  Google Scholar 

  9. d Peerlings RHJ, De Borst R, Brekelmans WAM, Geers MGD (2002) Localisation issues in local and nonlocal continuum approaches to fracture. Eur J Mech A/Solids 21(2):175–189

    Article  MathSciNet  MATH  Google Scholar 

  10. Kunin IA (1982) Elastic media with microstructure I: one-dimensional models, Springer series in solid state sciences, vol 26. Springer, Berlin

    Book  Google Scholar 

  11. Kunin IA (1983) Elastic media with microstructure II: three-dimensional models, Springer series in solid state sciences, vol 44. Springer, Berlin

    Book  Google Scholar 

  12. Maugin GA, Metrikine AV (2010) Mechanics of generalized continua. Springer, Berlin

    Book  MATH  Google Scholar 

  13. Voigt W (1887) Theoretische studien über die elasticitätsverhältnisse der krystalle. Königliche Gesellschaft der Wissenschaften zu Göttingen, Göttingen

    Google Scholar 

  14. Cosserat E, Cosserat F (1909) Théorie des corps déformables. A. Hermann et fils, Paris

    MATH  Google Scholar 

  15. Eringen AC (1966) Linear theory of micropolar elasticity. J Math Mech 15(6):909–923

    MathSciNet  MATH  Google Scholar 

  16. Eringen AC (1999) Microcontinuum field theories I: foundations and solids. Springer, Berlin

    Book  MATH  Google Scholar 

  17. Eringen AC (2001) Microcontinuum field theories II: fluent media, 2001. Springer, Berlin

    MATH  Google Scholar 

  18. Nowacki W (1986) Theory of asymmetric elasticity. Pergamon Press, Oxford

    MATH  Google Scholar 

  19. Nowacki W (1972) Theory of micropolar elasticity, vol 25. Springer, Berlin

    MATH  Google Scholar 

  20. Yang JFC, Lakes RS (1982) Experimental study of micropolar and couple stress elasticity in compact bone in bending. J Biomech 15(2):91–98

    Article  Google Scholar 

  21. Lakes RS, Nakamura S, Behiri JC, Bonfield W (1990) Fracture mechanics of bone with short cracks. J Biomech 23(10):967–975

    Article  Google Scholar 

  22. Lakes RS (1983) Size effects and micromechanics of a porous solid. J Mater Sci 18(9):2572–2580

    Article  ADS  Google Scholar 

  23. Hassanpour S, Heppler GR (2017) Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations. Math Mech Solids 22(2):224–242

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang F-Y, Yan B-H, Yan J-L, Yang D-U (2000) Bending analysis of micropolar elastic beam using a 3-D finite element method. Int J Eng Sci 38(3):275–286

    Article  MATH  Google Scholar 

  25. Ramezani S, Naghdabadi R, Sohrabpour S (2009) Analysis of micropolar elastic beams. Eur J Mech A/Solids 28(2):202–208

    Article  MATH  Google Scholar 

  26. Hassanpour S, Heppler GR (2016) Comprehensive and easy-to-use torsion and bending theories for micropolar beams. Int J Mech Sci 114:71–87

    Article  Google Scholar 

  27. Zozulya VV (2018) Higher order theory of micropolar plates and shells. ZAMM-J Appl Math Mech 98(6):886–918

    Article  MathSciNet  Google Scholar 

  28. Zozulya VV (2017) Micropolar curved rods. 2-D, high order, Timoshenko’s and Euler–Bernoulli models. Curved Layer Struct 4(1):104–118

    Google Scholar 

  29. Carrera E, Varello A (2012) Dynamic response of thin-walled structures by variable kinematic one-dimensional models. J Sound Vib 331(24):5268–5282

    Article  ADS  Google Scholar 

  30. Fazzolari FA, Carrera E (2013) Accurate free vibration analysis of thermo-mechanically pre/post-buckled anisotropic multilayered plates based on a refined hierarchical trigonometric Ritz formulation. Compos Struct 95:381–402

    Article  Google Scholar 

  31. Pagani A, Carrera E (2018) Unified formulation of geometrically nonlinear refined beam theories. Mech Adv Mater Struct 25(1):15–31

    Article  Google Scholar 

  32. Pagani A, Carrera E (2017) Large-deflection and post-buckling analyses of laminated composite beams by Carrera unified formulation. Compos Struct 170:40–52

    Article  Google Scholar 

  33. Carrera E, Pagani A (2014) Free vibration analysis of civil engineering structures by component-wise models. J Sound Vib 333(19):4597–4620

    Article  ADS  Google Scholar 

  34. Carrera E, Petrolo M, Varello A (2011) Advanced beam formulations for free-vibration analysis of conventional and joined wings. J Aerosp Eng 25(2):282–293

    Article  Google Scholar 

  35. Miglioretti F, Carrera E (2015) Application of a refined multi-field beam model for the analysis of complex configurations. Mech Adv Mater Struct 22(1–2):52–66

    Article  Google Scholar 

  36. Carrera E, Zozulya VV (2019) Carrera unified formulation (CUF) for the micropolar beams: analytical solutions. Mech Adv Mater Struct 26(1):1–25

    Article  Google Scholar 

  37. Carrera E, Cinefra M, Petrolo M, Zappino E (2014) Finite element analysis of structures through unified formulation. Wiley, New York

    Book  MATH  Google Scholar 

  38. Carrera E, Petrolo M (2012) Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica 47(3):537–556

    Article  MathSciNet  MATH  Google Scholar 

  39. Carrera E, Cinefra M, Lamberti A, Petrolo M (2015) Results on best theories for metallic and laminated shells including layer-wise models. Compos Struct 126:285–298

    Article  Google Scholar 

  40. Bathe KJ (1996) Finite element procedure. Prentice hall, Upper Saddle River

    Google Scholar 

  41. Carrera E, Cinefra M, Petrolo M, Zappino E (2014) Comparisons between 1D (beam) and 2D (plate/shell) finite elements to analyze thin walled structures. Aerotecnica Missili & Spazio 93(1–2):3–16

    Article  ADS  MATH  Google Scholar 

  42. Lakes R (1991) Experimental micro mechanics methods for conventional and negative poisson’s ratio cellular solids as Cosserat continua. J Eng Mater Technol 113(1):148–155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pagani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Components of the secant stiffness matrix

Appendix: Components of the secant stiffness matrix

$$\begin{aligned} {\mathbf {K}}_{u u x x}^{\tau s i j }&= C_{11}\int _\Omega F_{\tau _{,x}} \, F_{s_{,x}} d\Omega \, \int _L N_i \, N_j dL + C_{55}^{M}\int _\Omega F_{\tau _{,z}} \, F_{s_{,z}} d\Omega \, \int _L N_i \, N_j dL \, \\&+C_{44}^{M}\int _\Omega F_{\tau } \, F_{s} d\Omega \, \int _L N_{i_{,y}} \, N_{j_{,y}} dL \\ {\mathbf {K}}_{u u x y}^{i j \tau s}&= C_{12}\int _\Omega {\textit{F}}_{\tau } \, {\textit{F}}_{s_{,x}}d\Omega \, \int _L N_{i_{,y}} \, N_j dL + C_{44}^{MT} \int _\Omega {\textit{F}}_{\tau _{,x}} \, {\textit{F}}_{s} d\Omega \, \int _L N_i \, N_{j_{,y}} dL \end{aligned}$$
$$\begin{aligned} {\mathbf {K}}_{u u x z}^{i j \tau s}&= C_{55}^{MT} \int _\Omega F_{\tau _{,x}} \, F_{s_{,z}} d\Omega \, \int _L N_{i} \, N_j dL + C_{13} \int _\Omega F_{\tau _{,z}} \, F_{s_{,x}} d\Omega \, \int _L N_i \, N_{j} dL \\ {\mathbf {K}}_{u u y x}^{i j \tau s}&= C_{44}^{MT} \int _\Omega F_{\tau _{,z}} \, F_{s_{,x}} d\Omega \, \int _L N_{i_{,y}} \, N_j dL + C_{12} \int _\Omega F_{\tau _{,x}} \, F_{s} d\Omega \, \int _L N_i \, N_{j_{,y}}dL \\ {\mathbf {K}}_{u u y y}^{\tau s i j }&= C_{44}^{M} \int _\Omega F_{\tau _{,x}} \, F_{s_{,x}} d\Omega \, \int _L N_i \, N_j dL + C_{66}^{M} \int _\Omega F_{\tau _{,z}} \, F_{s_{,z}} \, N_i \, N_j d\Omega \, \int _L \, \\&+C_{22} \int _\Omega F_{\tau } \, F_{s} d\Omega \, \int _L N_{i_{,y}} \, N_{j_{,y}} dL \end{aligned}$$
$$\begin{aligned} {\mathbf {K}}_{u u y z}^{i j \tau s}&= C_{66}^{MT} \int _\Omega F_{\tau } \, F_{s_{,z}} d\Omega \, \int _L N_{i_{,y}} \, N_j dL + C_{23} \int _\Omega F_{\tau _{,z}} \, F_{s} d\Omega \, \int _L N_i \, N_{j_{,y}} dL \\ {\mathbf {K}}_{u u z x}^{i j \tau s}&= C_{13} \int _\Omega F_{\tau _{,x}} \, F_{s_{,z}} d\Omega \, \int _L N_{i} \, N_j dL + C_{55}^{MT} \int _\Omega F_{\tau _{,z}} \, F_{s_{,x}} d\Omega \, \int _L N_i \, N_{j} dL \\ {\mathbf {K}}_{u u z y}^{i j \tau s}&= C_{23} \int _\Omega F_{\tau } \, F_{s_{,z}} d\Omega \, \int _L N_{i_{,y}} \, N_j dL + C_{66}^{MT} \int _\Omega F_{\tau _{,z}} \, F_{s} d\Omega \, \int _L N_i \, N_{j_{,y}} dL \end{aligned}$$
$$\begin{aligned} {\mathbf {K}}_{u u z z}^{\tau s i j }&= C_{55}^{MT} \int _\Omega F_{\tau _{,x}} \, F_{s_{,x}} d\Omega \, \int _L N_i \, N_j dL + C_{33} \int _\Omega F_{\tau _{,z}} \, F_{s_{,z}} d\Omega \, \int _L N_i \, N_j dL \, \\&+C_{66}^{MT} \int _\Omega F_{\tau } \, F_{s} d\Omega \, \int _L N_{i_{,y}} \, N_{j_{,y}} dL \\ {\mathbf {K}}_{u \omega x x}^{i j \tau s}&= 0 \end{aligned}$$
$$\begin{aligned} {\mathbf {K}}_{u \omega x y}^{i j \tau s}&= -C_{55}^{M} \int _\Omega F_{\tau } \, F_{s_{,z}} d\Omega \, \int _L N_{i} \, N_j dL + C_{55}^{MT} \int _\Omega F_{\tau } \, F_{s_{,z}} d\Omega \, \int _L N_i \, N_{j} dL \\ {\mathbf {K}}_{u \omega x z}^{i j \tau s}&= C_{44}^{M} \int _\Omega F_{\tau } \, F_{s} d\Omega \, \int _L N_{i} \, N_{j_{,y}} dL - C_{44}^{MT} \int _\Omega F_{\tau } \, F_{s} d\Omega \, \int _L N_{i} \, N_{j_{,y}} dL \\ {\mathbf {K}}_{u \omega y x}^{i j \tau s}&= C_{66}^{M} \int _\Omega F_{\tau } \, F_{s_{,z}} d\Omega \, \int _L N_{i} \, N_j dL - C_{66}^{MT} \int _\Omega F_{\tau } \, F_{s_{,z}} d\Omega \, \int _L N_{i} \, N_{j} dL \end{aligned}$$
$$\begin{aligned} {\mathbf {K}}_{u \omega y y}^{i j \tau s}&= 0 \\ {\mathbf {K}}_{u \omega y z}^{i j \tau s}&= C_{44}^{MT} \int _\Omega F_{\tau } \, F_{s_{,x}} d\Omega \, \int _L N_{i} \, N_j dL - C_{44}^{M} \int _\Omega F_{\tau } \, F_{s_{,x}} d\Omega \, \int _L N_{i} \, N_{j} dL \\ {\mathbf {K}}_{u \omega z x}^{i j \tau s}&= -C_{66}^{M} \int _\Omega F_{\tau } \, F_{s} d\Omega \, \int _L N_{i} \, N_{j_{,y}} dL + C_{66}^{MT} \int _\Omega F_{\tau } \, F_{s} d\Omega \, \int _L N_{i} \, N_{j_{,y}} dL \end{aligned}$$
$$\begin{aligned} {\mathbf {K}}_{u \omega z y}^{i j \tau s}&= C_{55}^{M} \int _\Omega F_{\tau } \, F_{s_{,x}} d\Omega \, \int _L N_{i} \, N_j dL - C_{55}^{MT} \int _\Omega F_{\tau } \, F_{s_{,x}} d\Omega \, \int _L N_{i} \, N_{j} dL \\ {\mathbf {K}}_{u \omega z z}^{i j \tau s}&= 0 \\ {\mathbf {K}}_{\omega u x x}^{i j \tau s}&= 0 \end{aligned}$$
$$\begin{aligned} {\mathbf {K}}_{\omega u x y}^{i j \tau s}&= C_{66}^{M} \int _\Omega F_{s} \, F_{t_{,z}} d\Omega \, \int _L N_{i} \, N_j dL - C_{66}^{MT} \int _\Omega F_{s} \, F_{t_{,z}} d\Omega \, \int _L N_i \, N_{j} dL \\ {\mathbf {K}}_{\omega u x z}^{i j \tau s}&= -C_{66}^{M} \int _\Omega F_{s} \, F_{t} d\Omega \, \int _L N_{i_{,y}} \, N_{j} dL + C_{66}^{MT} \int _\Omega F_{s} \, F_{t} d\Omega \, \int _L N_{i_{,y}} \, N_{j_{,y}} dL \\ {\mathbf {K}}_{\omega u y x}^{i j \tau s}&= -C_{55}^{M} \int _\Omega F_{s} \, F_{t_{,z}} d\Omega \, \int _L N_{i} \, N_j dL + C_{55}^{MT} \int _\Omega F_{s} \, F_{t_{,z}} d\Omega \, \int _L N_{i} \, N_{j} dL \end{aligned}$$
$$\begin{aligned} {\mathbf {K}}_{\omega u y y}^{i j \tau s}&= 0 \\ {\mathbf {K}}_{\omega u y z}^{i j \tau s}&= C_{55}^{M} \int _\Omega F_{s} \, F_{t_{,x}} d\Omega \, \int _L N_{i} \, N_j dL - C_{55}^{MT} \int _\Omega F_{s} \, F_{t_{,x}} d\Omega \, \int _L N_{i} \, N_{j} dL \\ {\mathbf {K}}_{\omega u z x}^{i j \tau s}&= C_{44}^{M} \int _\Omega F_{s} \, F_{t} d\Omega \, \int _L N_{i_{,y}} \, N_{j} dL - C_{44}^{MT} \int _\Omega F_{s} \, F_{t} d\Omega \, \int _L N_{i_{,y}} \, N_{j} dL \end{aligned}$$
$$\begin{aligned} {\mathbf {K}}_{\omega u z y}^{i j \tau s}&= -C_{44}^{M} \int _\Omega F_{s} \, F_{t_{,x}} d\Omega \, \int _L N_{i} \, N_j dL + C_{44}^{MT} \int _\Omega F_{s} \, F_{t_{,x}} d\Omega \, \int _L N_{i} \, N_{j} dL \\ {\mathbf {K}}_{\omega u z z}^{i j \tau s}&= 0 \\ {\mathbf {K}}_{\omega \omega x x}^{i j \tau s}&= 2C_{66}^{M} \int _\Omega F_{s} \, F_{t} d\Omega \, \int _L N_{i} \, N_j dL - 2C_{66}^{MT} \int _\Omega F_{s} \, F_{t} d\Omega \, \int _L N_i \, N_{j} dL + A_{11} \int _\Omega F_{\tau _{,x}} \, F_{s_{,x}} d\Omega \, \int _L N_i \, N_j dL + A_{55} \int _\Omega F_{\tau _{,z}} \, F_{s_{,z}} d\Omega \, \int _L N_i \, N_j dL + A_{44} \int _\Omega F_{\tau } \, F_{s} d\Omega \, \int _L N_{i_{,y}} \, N_{j_{,y}} dL\end{aligned}$$
$$\begin{aligned} {\mathbf {K}}_{u u x z}^{i j \tau s}&= A_{12} \int _\Omega F_{\tau } \, F_{s_{,x}} d\Omega \, \int _L N_{i_{,y}} \, N_j dL + A_{44}^{MT} \int _\Omega F_{\tau _{,x}} \, F_{s} d\Omega \, \int _L N_i \, N_{j_{,y}} dL \\ {\mathbf {K}}_{u u x z}^{i j \tau s}&= A_{55}^{MT} \int _\Omega F_{\tau _{,x}} \, F_{s_{,z}} d\Omega \, \int _L N_{i} \, N_j dL + A_{13} \int _\Omega F_{\tau _{,z}} \, F_{s_{,x}} d\Omega \, \int _L N_i \, N_{j} dL \\ {\mathbf {K}}_{u u y x}^{i j \tau s}&= A_{44}^{MT} \int _\Omega F_{\tau } \, F_{s_{,x}} d\Omega \, \int _L N_{i_{,y}} \, N_j dL + A_{12} \int _\Omega F_{\tau _{,x}} \, F_{s} d\Omega \, \int _L N_i \, N_{j_{,y}} dL \\ {\mathbf {K}}_{\omega \omega x x}^{i j \tau s}&= 2C_{55}^{M} \int _\Omega F_{s} \, F_{t} d\Omega \, \int _L N_{i} \, N_j dL - 2C_{55}^{MT} \int _\Omega F_{s} \, F_{t} d\Omega \, \int _L N_i \, N_{j} dL + A_{44} \int _\Omega F_{\tau _{,x}} \, F_{s_{,x}} d\Omega \, \int _L N_i \, N_j dL + A_{66} \int _\Omega F_{\tau _{,z}} \, F_{s_{,z}} d\Omega \, \int _L N_i \, N_j dL + A_{22} \int _\Omega F_{\tau } \, F_{s} d\Omega \, \int _L N_{i_{,y}} \, N_{j_{,y}} dL\end{aligned}$$
$$\begin{aligned} {\mathbf {K}}_{u u y z}^{i j \tau s}&= A_{66}^{MT} \int _\Omega F_{\tau } \, F_{s_{,z}} d\Omega \, \int _L N_{i_{,y}} \, N_j dL + A_{23} \int _\Omega F_{\tau _{,z}} \, F_{s} d\Omega \, \int _L N_i \, N_{j_{,y}} dL \\ {\mathbf {K}}_{u u z x}^{i j \tau s}&= A_{13} \int _\Omega F_{\tau _{,x}} \, F_{s_{,z}} d\Omega \, \int _L N_{i} \, N_j dL + A_{55}^{MT} \int _\Omega F_{\tau _{,z}} \, F_{s_{,x}} d\Omega \, \int _L N_i \, N_{j} dL \\ {\mathbf {K}}_{u u z y}^{i j \tau s}&= A_{66}^{MT} \int _\Omega F_{\tau _{,z}} \, F_{s} d\Omega \, \int _L N_{i} \, N_{j_{,y}} dL + A_{23} \int _\Omega F_{\tau } \, F_{s_{,z}} d\Omega \, \int _L N_{i_{,y}} \, N_{j} dL \\ {\mathbf {K}}_{\omega \omega x x}^{i j \tau s}&= 2C_{44}^{M} \int _\Omega F_{s} \, F_{t} d\Omega \, \int _L N_{i} \, N_j dL - 2C_{44}^{MT} \int _\Omega F_{s} \, F_{t} d\Omega \, \int _L N_i \, N_{j} dL + A_{55} \int _\Omega F_{\tau _{,x}} \, F_{s_{,x}} d\Omega \, \int _L N_i \, N_j dL + A_{33} \int _\Omega F_{\tau _{,z}} \, F_{s_{,z}} d\Omega \, \int _L N_i \, N_j dL + A_{66} \int _\Omega F_{\tau } \, F_{s} d\Omega \, \int _L N_{i_{,y}} \, N_{j_{,y}} dL\end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augello, R., Carrera, E. & Pagani, A. Unified theory of structures based on micropolar elasticity. Meccanica 54, 1785–1800 (2019). https://doi.org/10.1007/s11012-019-01041-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01041-z

Keywords

Navigation