Skip to main content
Log in

Igf2-derived intronic miR-483 promotes mouse hepatocellular carcinoma cell proliferation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Most intronic micro-RNAs are coexpressed with their host genes, suggesting that they may play similar roles. The function of miR-483 remains unknown, although it is embedded in an intron of Igf2 gene, which is an activator of hepatocellular carcinoma proliferation. In the present study, we provide evidence that Igf2-derived miR-483 can induce proliferation in hepatocellular carcinoma cells. The miR-483 promotion of proliferation was analysed by soft agar colony formation assay and proliferation curve assay. The effect of miR-483 on Socs3 expression was examined by Western blot and a reporter assay. Our results revealed that Igf2-derived intronic miR-483 was identified by the application of 94G6, an inhibitor of Igf2 at the transcriptional level. All results from the (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) MTT assay, the proliferation curve assay and the soft agar colony formation assay showed that miR-483 promoted the proliferation of hepatocellular carcinoma cells. Finally, Socs3, a putative target predicted by bioinformatics, was regulated by miR-483 at mRNA and protein levels. Direct binding with the 3′ UTR was identified by a luciferase activity assay. Our findings demonstrate that Igf2-derived intronic miR-483, through downregulation of its target Socs3, regulates hepatoma cell proliferation and thus may serve as a potential target for hepatocellular carcinoma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917

    Article  PubMed  Google Scholar 

  2. El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–2576

    Article  PubMed  CAS  Google Scholar 

  3. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  PubMed  CAS  Google Scholar 

  4. Liu C, Yu J, Yu S et al (2010) MicroRNA-21 acts as an oncomir through multiple targets in human hepatocellular carcinoma. J Hepatol 53:98–107

    Article  PubMed  CAS  Google Scholar 

  5. Fornari F, Gramantieri L, Ferracin M et al (2008) MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27:5651–5661

    Article  PubMed  CAS  Google Scholar 

  6. Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414

    Article  PubMed  CAS  Google Scholar 

  7. Tovar V, Alsinet C, Villanueva A et al (2010) IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J Hepatol 52:550–559

    Article  PubMed  CAS  Google Scholar 

  8. Kim KS, Lee YI (1997) Biallelic expression of the H19 and IGF2 genes in hepatocellular carcinoma. Cancer Lett 119:143–148

    Article  PubMed  CAS  Google Scholar 

  9. Yankun H, Xing J, Linchuan L (2008) Expression changes of microRNAs in myocardium of obesity prone rats. J Harbin Med Univ 42:568–570

    Google Scholar 

  10. Patterson EE, Holloway AK, Weng J, Fojo T, Kebebew E (2010) MicroRNA profiling of adrenocortical tumors reveals miR-483 as a marker of malignancy. Cancer. 117:1630–1639

    Article  PubMed  Google Scholar 

  11. van Rooij E, Sutherland LB, Qi X et al (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579

    Article  PubMed  Google Scholar 

  12. Saito Y, Friedman JM, Chihara Y et al (2009) Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 379:726–731

    Article  PubMed  CAS  Google Scholar 

  13. Barik S (2008) An intronic microRNA silences genes that are functionally antagonistic to its host gene. Nucleic Acids Res 36:5232–5241

    Article  PubMed  CAS  Google Scholar 

  14. Ma N, Wang X, Qiao Y et al (2011) Coexpression of an intronic microRNA and its host gene reveals a potential role for miR-483 as an IGF2 partner. Mol Cell Endocrinol 333:96–101

    Article  PubMed  CAS  Google Scholar 

  15. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

  16. Choi Y, Kawazoe Y, Murakami K et al (2003) Identification of bioactive molecules by adipogenesis profiling of organic compounds. J Biol Chem 278:7320–7324

    Article  PubMed  CAS  Google Scholar 

  17. Niwa Y, Kanda H, Shikauchi Y et al (2005) Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene 24:6406–6417

    PubMed  CAS  Google Scholar 

  18. Kuhnert F, Mancuso MR, Hampton J et al (2008) Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 135:3989–3993

    Article  PubMed  CAS  Google Scholar 

  19. Rayner KJ, Suárez Y, Dávalos A et al (2010) MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328:1570–1573

    Article  PubMed  CAS  Google Scholar 

  20. Najafi-Shoushtari SH, Kristo F, Li Y et al (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328:1566–1569

    Article  PubMed  CAS  Google Scholar 

  21. Bell ML, Buvoli M, Leinwand LA (2010) Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. Mol Cell Biol 30:1937–1945

    Article  PubMed  CAS  Google Scholar 

  22. Polster BJ, Westaway SK, Nguyen TM et al (2010) Discordant expression of miR-103/7 and pantothenate kinase host genes in mouse. Mol Genet Metab 101:292–295

    Article  PubMed  CAS  Google Scholar 

  23. Chen YW, Boyartchuk V, Lewis BC (2009) Differential roles of insulin-like growth factor receptor- and insulin receptor-mediated signaling in the phenotypes of hepatocellular carcinoma cells. Neoplasia 11:835–845

    PubMed  CAS  Google Scholar 

  24. Poirier K, Chalas C, Tissier F et al (2003) Loss of parental-specific methylation at the IGF2 locus in human hepatocellular carcinoma. J Pathol 201:473–479

    Article  PubMed  CAS  Google Scholar 

  25. Xu T, Zhu Y, Xiong Y et al (2009) MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology 50:113–121

    Article  PubMed  CAS  Google Scholar 

  26. Gramantieri L, Fornari F, Callegari E et al (2008) MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 12:2189–2204

    Article  PubMed  CAS  Google Scholar 

  27. Polesskaya A, Cuvellier S, Naguibneva I et al (2007) Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes Dev 21:1125–1138

    Article  PubMed  CAS  Google Scholar 

  28. Zeng C, Wang R, Li D et al (2010) A novel GSK-3 beta-C/EBP alpha-miR-122-insulin-like growth factor 1 receptor regulatory circuitry in human hepatocellular carcinoma. Hepatology 52:1702–1712

    Article  PubMed  CAS  Google Scholar 

  29. Cao G, Huang B, Liu Z et al (2010) Intronic miR-301 feedback regulates its host gene, ska2, in A549 cells by targeting MEOX2 to affect ERK/CREB pathways. Biochem Biophys Res Commun 396:978–982

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Young Natural Science Foundation of Heilongjiang Province (QC2010002), the Natural Science Foundation For Youth of China (Project No. 81101373) and the Postgraduate Foundation of Heilongjiang Province (YJSCX2011-320HLJ).

Conflicts of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Gao.

Additional information

Ning Ma and Fuyuan Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, N., Li, F., Li, D. et al. Igf2-derived intronic miR-483 promotes mouse hepatocellular carcinoma cell proliferation. Mol Cell Biochem 361, 337–343 (2012). https://doi.org/10.1007/s11010-011-1121-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1121-x

Keywords

Navigation