Skip to main content
Log in

Over-expression of transglutaminase in the Drosophila eye imaginal disc induces a rough eye phenotype

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Transglutaminases (TGs) catalyze the cross-linking of proteins and are involved in various biological processes in mammals. In invertebrates, except for the involvement in the hemolymph clotting, the functions of TG have not been revealed. Drosophila has a single TG gene (CG7356), from which two kinds of mRNAs (dTG-RA and dTG-RB) are formed. RT-PCR analyses indicated that both dTGs-RA and -RB are synthesized in all the developmental stages tested. To reveal the roles of dTG during the development, we examined a phenotype induced through the ectopic expression of dTG by using a GAL4-UAS targeted expression system. Over-expression of dTG-A in the eye imaginal disc of larva induced a rough eye phenotype in adult compound eyes. Co-expression of P35, an inhibitor of apoptosis, suppressed the rough eye phenotype, suggesting that the rough eye phenotype induced by the over-expression of dTG-A in the eye imaginal disc is due to the occurrence of apoptosis. The rough eye phenotype induced by the over-expression of dTG-A was suppressed by the crossing with mutant fly lines lacking Drosophila JNK gene basket (bsk) or Drosophila JNKK gene hemipterous. FLP-out experiments using an enhancer trap line showed that the over-expression of dTG-A in the eye imaginal disc increased the puckered enhancer activity, a reporter of Bsk activity. These results suggested that the rough eye phenotype induced by the over-expression of dTG-A is related to an enhancement of JNK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fesus L, Piacentini M (2002) Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci 27:534–539

    Article  CAS  PubMed  Google Scholar 

  2. Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    Article  CAS  PubMed  Google Scholar 

  3. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  CAS  PubMed  Google Scholar 

  4. Esposito C, Caputo I (2005) Mammalian transglutaminases: identification of substrates as a key to physiological function and physiopathological relevance. FEBS J 272:615–631

    Article  CAS  PubMed  Google Scholar 

  5. Grenard P, Bates MK, Aeschlimann D (2001) Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. J Biol Chem 276:33066–33078

    Article  CAS  PubMed  Google Scholar 

  6. Tokunaga F, Yamada M, Miyata T, Ding YL, Hiranaga-Kawabata M, Muta T, Iwanaga S, Ichinose A, Davie EW (1993) Limulus hemocyte transglutaminase: its purification and characterization, and identification of the intracellular substrates. J Biol Chem 268:252–261

    CAS  PubMed  Google Scholar 

  7. Tokunaga F, Muta T, Iwanaga S, Ichinose A, Davie EW, Kuma K, Miyata T (1993) Limulus hemocyte transglutaminase: cDNA cloning, amino acid sequence, and tissue localization. J Biol Chem 268:262–268

    CAS  PubMed  Google Scholar 

  8. Osaki T, Okino N, Tokunaga F, Iwanaga S, Kawabata S (2002) Proline-rich cell surface antigens of horseshoe crab hemocytes are substrates for protein cross-linking with a clotting protein coagulin. J Biol Chem 277:40084–40090

    Article  CAS  PubMed  Google Scholar 

  9. Singer MA, Hortsch M, Goodman CS, Bentley D (1992) Annulin, a protein expressed at limb segment boundaries in the grasshopper embryo, is homologous to protein cross-linking transglutaminase. Dev Biol 154:143–159

    Article  CAS  PubMed  Google Scholar 

  10. Matsuda Y, Koshiba T, Osaki T, Suyama H, Arisaka F, Toh Y, Kawabata S (2007) An arthropod cuticular chitin-binding protein endows injured sites with transglutaminase-dependent mesh. J Biol Chem 282:37316–37324

    Article  CAS  PubMed  Google Scholar 

  11. Lin X, Soderhall K, Soderhall I (2008) Transglutaminase activity in the hematopoietic tissue of a crustacean, Pacifastacus leniuscurs, importance in hemocyte homeostasia. BMC Immunol 9:58

    Article  PubMed  Google Scholar 

  12. Karlsson C, Korayem AM, Scherfer C, Loseva O, Dushay MS, Theopold U (2004) Proteomic analysis of the Drosophila larval hemolymph clot. J Biol Chem 279:52033–52041

    Article  CAS  PubMed  Google Scholar 

  13. Lindgren M, Riazi R, Lesch C, Wilhelmsson C, Theopold U, Dushay MS (2008) Fondue and transglutaminase in the Drosophila larval clot. J Insect Physiol 54:586–592

    Article  CAS  PubMed  Google Scholar 

  14. Ikle J, Elwell JA, Bryantsev AL, Cripps RM (2008) Cardiac expression of the Drosophila transglutaminase (CG7356) gene is directly controlled by myocyte enhancer factor-2. Dev Dyn 237:2090–2099

    Article  CAS  PubMed  Google Scholar 

  15. Brand AH, Perrimon N (1993) Targeted gene expression as means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  16. Hirose F, Ohshima N, Shiraki M, Inoue YH, Taguchi O, Nishi Y, Matsukage A, Yamaguchi M (2001) Ectopic expression of DREF induced DNA synthesis, apoptosis, and unusual morphogenesis in the Drosophila eye imaginal disc: possible interaction with polycomb and trithorax group proteins. Mol Cell Biol 21:7231–7242

    Article  CAS  PubMed  Google Scholar 

  17. Adachi-Yamada T (2002) Puckered-GAL4 driving in JNK-active cells. Genesis 34:19–22

    Article  CAS  PubMed  Google Scholar 

  18. Spradling AC (1986) P-element-mediated transformation. In: Roberts DB (ed) Drosophila, a practical approach. IRL Press, Oxford, pp 175–197

    Google Scholar 

  19. Robertson HM, Preston CR, Phillis RW, Johnson-Schlitz DM, Benz WK, Engels WR (1988) A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118:461–470

    CAS  PubMed  Google Scholar 

  20. Ikura K, Yanagawa S, Okumura K, Sasaki R, Chiba H (1984) Production of monoclonal antibodies to guinea pig liver transglutaminase. Agric Biol Chem 48:1835–1840

    CAS  Google Scholar 

  21. Sun J, Tower J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19:216–228

    CAS  PubMed  Google Scholar 

  22. Piacentini M, Amendola A, Ciccosanti F, Falasca L, Farrace MG, Mastroberardino PG, Nardacci R, Oliverio S, Piredda L, Rodolfo C, Autuori F (2005) Type 2 transglutaminase and cell death. In: Mehta K, Eckert R (eds) Transglutaminases. Family of enzymes with diverse functions. Karger, Basel, pp 58–74

    Google Scholar 

  23. Yamaguchi M, Yoshida H, Hirose F, Inoue YH, Hayashi Y, Yamagishi M, Nishi Y, Tamai K, Sakaguchi K, Matsukage A (2001) Ectopic expression of BEAF32A in the Drosophila eye imaginal disc inhibits differentiation of photoreceptor cells and induces apoptosis. Chromosoma 110:313–321

    Article  CAS  PubMed  Google Scholar 

  24. Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120:2121–2129

    CAS  PubMed  Google Scholar 

  25. Roibitaille K, Daviau A, Tucholski J, Johnson GVW, Rancourt C, Blouin R (2004) Tissue transglutaminase triggers oligomerization and activation of dual leucine zipper-bearing kinase in calphostin C-treated cells to facilitate apoptosis. Cell Death Differ 11:539–542

    Google Scholar 

  26. Martin-Blanco E, Gampel A, Ring J, Virdee K, Kirov N, Tolkovski AM, Martinez-Arias A (1998) Puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev 12:557–570

    Article  CAS  PubMed  Google Scholar 

  27. Matsumoto K (1999) Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature 400:166–169

    Article  PubMed  Google Scholar 

  28. Tateno M, Nishida Y, Adachi-Yamada T (2000) Regulation of JNK by Src during Drosophila development. Science 287:324–327

    Article  CAS  PubMed  Google Scholar 

  29. Igaki T, Kanda H, Yamamoto-Goto Y, Kanuka H, Kuranaga E, Aigaki T, Miura M (2002) Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway. EMBO J 21:3009–3018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in Aid for Scientific Research (C) 18580092 (to K. I.) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Ikura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umehara, M., Ichikawa, A., Sakamoto, H. et al. Over-expression of transglutaminase in the Drosophila eye imaginal disc induces a rough eye phenotype. Mol Cell Biochem 342, 223–232 (2010). https://doi.org/10.1007/s11010-010-0487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0487-5

Keywords

Navigation