Skip to main content
Log in

Walker 256 cancer cells secrete tissue inhibitor of metalloproteinase-free metalloproteinase-9

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Walker 256 (W256) cancer cells, developed as ascites in rats, in response to endogenous unidentified stimuli, secrete a gelatinase of apparent molecular mass of 94 kDa, immunologically homologous to the zymogen of matrix metalloproteinase-9 (proMMP-9). After treatment with the activating agent 4-aminophenylmercuric acetate (APMA), affinity-purified W256 gelatinase is converted to a final processed form of 66 kDa in a similar fashion to TIMP-free human proMMP-9. It is demonstrated that although being capable of binding TIMP-1, W256 proMMP-9 is secreted from W256 cells in TIMP-free forms (monomers or oligomers). Moreover, using biochemical and immunological methods, it is established that the W256 cells do not express or secrete TIMP-1 protein, although RT-PCR analysis indicated low-level TIMP-1 mRNA expression. W256 cancer cells displayed high metastatic ability in rats that may be attributed in part to secretion of TIMP-free proMMP-9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stocker W, Grams F, Baumann U et al (1995) The metzincins—topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci 4:823–840

    Article  PubMed  CAS  Google Scholar 

  2. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494. doi:10.1074/jbc.274.31.21491

    Article  PubMed  CAS  Google Scholar 

  3. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573. doi:10.1016/j.cardiores.2005.12.002

    Article  PubMed  CAS  Google Scholar 

  4. Birkedal-Hansen H, Moore WG, Bodden MK et al (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4:197–250

    PubMed  CAS  Google Scholar 

  5. Woessner JF Jr (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5:2145–2154

    PubMed  CAS  Google Scholar 

  6. Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25:9–34. doi:10.1007/s10555-006-7886-9

    Article  PubMed  CAS  Google Scholar 

  7. Stamenkovic I (2000) Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 10:415–433. doi:10.1006/scbi.2000.0379

    Article  PubMed  CAS  Google Scholar 

  8. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174. doi:10.1038/nrc745

    Article  PubMed  CAS  Google Scholar 

  9. Pavlaki M, Zucker S (2003) Matrix metalloproteinase inhibitors (MMPIs): the beginning of phase I or the termination of phase III clinical trials. Cancer Metastasis Rev 22:177–203. doi:10.1023/A:1023047431869

    Article  PubMed  CAS  Google Scholar 

  10. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516. doi:10.1146/annurev.cellbio.17.1.463

    Article  PubMed  CAS  Google Scholar 

  11. Zucker S, Cao J, Molloy CM (2002) Role of matrix metalloproteinases and plasminogen activators in cancer invasion and metastasis: therapeutic strategies. In: Baguley BC, Kerr DJ (eds) Anticancer development. Academic Press, San Diego, CA, pp 91–122

    Chapter  Google Scholar 

  12. Pei D, Weiss SJ (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375:244–247. doi:10.1038/375244a0

    Article  PubMed  CAS  Google Scholar 

  13. Pei D, Weiss SJ (1996) Transmembrane-deletion mutants of the membrane-type matrix metalloproteinase-1 process progelatinase A and express intrinsic matrix-degrading activity. J Biol Chem 271:9135–9140. doi:10.1074/jbc.271.21.12639

    Article  PubMed  CAS  Google Scholar 

  14. Cao J, Drews M, Lee HM et al (1998) The propeptide domain of membrane type 1 matrix metalloproteinase is required for binding of tissue inhibitor of metalloproteinases and for activation of pro-gelatinase A. J Biol Chem 273:34745–34752. doi:10.1074/jbc.273.52.34745

    Article  PubMed  CAS  Google Scholar 

  15. Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378:151–160

    PubMed  CAS  Google Scholar 

  16. Tschesche H (1995) Human neutrophil collagenase. Methods Enzymol 248:431–449. doi:10.1016/0076-6879(95)48028-5

    Article  PubMed  CAS  Google Scholar 

  17. Murphy G, Willenbrock F (1995) Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol 248:496–510. doi:10.1016/0076-6879(95)48032-3

    Article  PubMed  CAS  Google Scholar 

  18. Murphy G, Crabbe T (1995) Gelatinases A and B. Methods Enzymol 248:470–484. doi:10.1016/0076-6879(95)48030-7

    Article  PubMed  CAS  Google Scholar 

  19. Goldberg GI, Marmer BL, Grant GA et al (1989) Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc Natl Acad Sci USA 86:8207–8211. doi:10.1073/pnas.86.21.8207

    Article  PubMed  CAS  Google Scholar 

  20. Wilhelm SM, Collier IE, Marmer BL et al (1989) SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem 264:17213–17221

    PubMed  CAS  Google Scholar 

  21. Hibbs MS, Hasty KA, Seyer JM et al (1985) Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. J Biol Chem 260:2493–2500

    PubMed  CAS  Google Scholar 

  22. Triebel S, Blaser J, Reinke H et al (1992) A 25 kDa alpha 2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase. FEBS Lett 314:386–388. doi:10.1016/0014-5793(92)81511-J

    Article  PubMed  CAS  Google Scholar 

  23. Goldberg GI, Strongin A, Collier IE et al (1992) Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem 267:4583–4591

    PubMed  CAS  Google Scholar 

  24. Chew EC (1976) The fine structure of Walker 256 carcinoma cells. Experientia 32:1192–1194. doi:10.1007/BF01927621

    PubMed  CAS  Google Scholar 

  25. Simpkins H, Lehman JM, Mazurkiewicz JE et al (1991) A morphological and phenotypic analysis of Walker 256 cells. Cancer Res 51:1334–1338

    PubMed  CAS  Google Scholar 

  26. Kostenuik PJ, Orr FW, Suyama K et al (1993) Increased growth rate and tumor burden of spontaneously metastatic Walker 256 cancer cells in the skeleton of bisphosphonate-treated rats. Cancer Res 53:5452–5457

    PubMed  CAS  Google Scholar 

  27. Orr FW, Kostenuik P, Sanchez-Sweatman OH et al (1993) Mechanisms involved in the metastasis of cancer to bone. Breast Cancer Res Treat 25:151–163. doi:10.1007/BF00662140

    Article  PubMed  CAS  Google Scholar 

  28. Paterson AH (2000) The potential role of bisphosphonates as adjuvant therapy in the prevention of bone metastases. Cancer 88:3038–3046. doi:10.1002/1097-0142(20000615)88:12<3038::AID-CNCR21>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

  29. Grunicke H, Hofmann J, Utz I et al (1994) Role of protein kinases in antitumor drug resistance. Ann Hematol 69(Suppl 1):S1–S6. doi:10.1007/BF01757347

    Article  PubMed  CAS  Google Scholar 

  30. Bastaki M, Missirlis E, Klouras N et al (1994) Suppression of angiogenesis by the antitumor agent titanocene dichloride. Eur J Pharmacol 251:263–269. doi:10.1016/0014-2999(94)90408-1

    Article  PubMed  CAS  Google Scholar 

  31. Dowell JA, Sancho AR, Anand D et al (2000) Noninvasive measurements for studying the tumoral pharmacokinetics of platinum anticancer drugs in solid tumors. Adv Drug Deliv Rev 41:111–126. doi:10.1016/S0169-409X(99)00059-9

    Article  PubMed  CAS  Google Scholar 

  32. Homem de Bittencourt PI Jr, Curi R (2001) Antiproliferative prostaglandins and the MRP/GS-X pump role in cancer immunosuppression and insight into new strategies in cancer gene therapy. Biochem Pharmacol 62:811–819. doi:10.1016/S0006-2952(01)00738-9

    Article  PubMed  CAS  Google Scholar 

  33. Shaughnessy SG, Whaley M, Lafrenie RM et al (1993) Walker 256 tumor cell degradation of extracellular matrices involves a latent gelatinase activated by reactive oxygen species. Arch Biochem Biophys 304:314–321. doi:10.1006/abbi.1993.1356

    Article  PubMed  CAS  Google Scholar 

  34. Maragoudakis ME, Peristeris P, Missirlis E et al (1994) Inhibition of angiogenesis by anthracyclines and titanocene dichloride. Ann N Y Acad Sci 732:280–293. doi:10.1111/j.1749-6632.1994.tb24743.x

    Article  PubMed  CAS  Google Scholar 

  35. Okada Y, Tsuchiya H, Shimizu H et al (1990) Induction and stimulation of 92-kDa gelatinase/type IV collagenase production in osteosarcoma and fibrosarcoma cell lines by tumor necrosis factor alpha. Biochem Biophys Res Commun 171:610–617. doi:10.1016/0006-291X(90)91190-4

    Article  PubMed  CAS  Google Scholar 

  36. Sato T, Ito A, Mori Y (1990) Interleukin 6 enhances the production of tissue inhibitor of metalloproteinases (TIMP) but not that of matrix metalloproteinases by human fibroblasts. Biochem Biophys Res Commun 170:824–829. doi:10.1016/0006-291X(90)92165-V

    Article  PubMed  CAS  Google Scholar 

  37. Syggelos SA, Eleftheriou SC, Giannopoulou E et al (2001) Gelatinolytic and collagenolytic activity in periprosthetic tissues from loose hip endoprostheses. J Rheumatol 28:1319–1329

    PubMed  CAS  Google Scholar 

  38. Heussen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102:196–202. doi:10.1016/0003-2697(80)90338-3

    Article  PubMed  CAS  Google Scholar 

  39. Zucker S, Moll UM, Lysik RM et al (1990) Extraction of type-IV collagenase/gelatinase from plasma membranes of human cancer cells. Int J Cancer 45:1137–1142. doi:10.1002/ijc.2910450625

    Article  PubMed  CAS  Google Scholar 

  40. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  41. Velleman SG (1995) Quantifying immunoblots with a digital scanner. Biotechniques 18:1056–1058

    PubMed  CAS  Google Scholar 

  42. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354. doi:10.1073/pnas.76.9.4350

    Article  PubMed  CAS  Google Scholar 

  43. Kim MH, Albertsson P, Xue Y et al (2000) Expression of matrix metalloproteinases and their inhibitors by rat NK cells: inhibition of their expression by genistein. In Vivo 14:557–564

    PubMed  CAS  Google Scholar 

  44. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    PubMed  CAS  Google Scholar 

  45. Halliday DA, McNeil JD, Betts WH et al (1993) The substance P fragment SP-(7–11) increases prostaglandin E2, intracellular Ca2+ and collagenase production in bovine articular chondrocytes. Biochem J 292:57–62

    PubMed  CAS  Google Scholar 

  46. Dean DD, Woessner JF Jr (1984) Extracts of human articular cartilage contain an inhibitor of tissue metalloproteinases. Biochem J 218:277–280

    PubMed  CAS  Google Scholar 

  47. Davis GE, Martin BM (1990) A latent Mr 94,000 gelatin-degrading metalloprotease induced during differentiation of HL-60 promyelocytic leukemia cells: a member of the collagenase family of enzymes. Cancer Res 50:1113–1120

    PubMed  CAS  Google Scholar 

  48. Ries C, Lottspeich F, Dittmann KH et al (1996) HL-60 leukemia cells produce an autocatalytically truncated form of matrix metalloproteinase-9 with impaired sensitivity to inhibition by tissue inhibitors of metalloproteinases. Leukemia 10:1520–1526

    PubMed  CAS  Google Scholar 

  49. Kjeldsen L, Johnsen AH, Sengelov H et al (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268:10425–10432

    PubMed  CAS  Google Scholar 

  50. Wolf W, Wirl G (1982) Collagenase in the Walker 256 carcinoma. A study of the latent and active enzyme in vivo and in vitro. Eur J Biochem 121:623–629. doi:10.1111/j.1432-1033.1982.tb05831.x

    Article  PubMed  CAS  Google Scholar 

  51. LaBombardi VJ, Shaw E, DiStefano JF et al (1983) Isolation and characterization of a trypsin-like serine proteinase from the membranes of Walker 256 carcinosarcoma cells. Biochem J 211:695–700

    PubMed  CAS  Google Scholar 

  52. Sang QX, Birkedal-Hansen H, Van Wart HE (1995) Proteolytic and non-proteolytic activation of human neutrophil progelatinase B. Biochim Biophys Acta 1251:99–108

    PubMed  Google Scholar 

  53. Opdenakker G, Van den Steen PE, Dubois B et al (2001) Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol 69:851–859

    PubMed  CAS  Google Scholar 

  54. Triebel S, Blaser J, Gote T et al (1995) Evidence for the tissue inhibitor of metalloproteinases-1 (TIMP-1) in human polymorphonuclear leukocytes. Eur J Biochem 231:714–719. doi:10.1111/j.1432-1033.1995.0714d.x

    Article  PubMed  CAS  Google Scholar 

  55. Kolkenbrock H, Hecker-Kia A, Orgel D et al (1996) Progelatinase B forms from human neutrophils. Complex formation of monomer/lipocalin with TIMP-1. Biol Chem 377:529–533

    PubMed  CAS  Google Scholar 

  56. Morodomi T, Ogata Y, Sasaguri Y et al (1992) Purification and characterization of matrix metalloproteinase 9 from U937 monocytic leukaemia and HT1080 fibrosarcoma cells. Biochem J 285:603–611

    PubMed  CAS  Google Scholar 

  57. Ogata Y, Itoh Y, Nagase H (1995) Steps involved in activation of the pro-matrix metalloproteinase 9 (progelatinase B)-tissue inhibitor of metalloproteinases-1 complex by 4-aminophenylmercuric acetate and proteinases. J Biol Chem 270:18506–18511. doi:10.1074/jbc.270.31.18506

    Article  PubMed  CAS  Google Scholar 

  58. Shapiro SD, Fliszar CJ, Broekelmann TJ et al (1995) Activation of the 92-kDa gelatinase by stromelysin and 4-aminophenylmercuric acetate. J Biol Chem 270:6351–6356. doi:10.1074/jbc.270.11.6351

    Article  PubMed  CAS  Google Scholar 

  59. Okada Y, Gonoji Y, Naka K et al (1992) Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J Biol Chem 267:21712–21719

    PubMed  CAS  Google Scholar 

  60. Murphy G, Bretz U, Baggiolini M et al (1980) The latent collagenase and gelatinase of human polymorphonuclear neutrophil leucocytes. Biochem J 192:517–525

    PubMed  CAS  Google Scholar 

  61. Murphy G, Ward R, Hembry RM et al (1989) Characterization of gelatinase from pig polymorphonuclear leucocytes. A metalloproteinase resembling tumour type IV collagenase. Biochem J 258:463–472

    PubMed  CAS  Google Scholar 

  62. Vartio T, Baumann M (1989) Human gelatinase/type IV procollagenase is a regular plasma component. FEBS Lett 255:285–289. doi:10.1016/0014-5793(89)81107-X

    Article  PubMed  CAS  Google Scholar 

  63. Moll UM, Youngleib GL, Rosinski KB et al (1990) Tumor promoter-stimulated Mr 92, 000 gelatinase secreted by normal and malignant human cells: isolation and characterization of the enzyme from HT1080 tumor cells. Cancer Res 50:6162–6170

    PubMed  CAS  Google Scholar 

  64. Lyons JG, Birkedal-Hansen B, Moore WG et al (1991) Characteristics of a 95-kDa matrix metalloproteinase produced by mammary carcinoma cells. Biochemistry 30:1449–1456. doi:10.1021/bi00220a001

    Article  PubMed  CAS  Google Scholar 

  65. Salo T, Lyons JG, Rahemtulla F et al (1991) Transforming growth factor-beta 1 up-regulates type IV collagenase expression in cultured human keratinocytes. J Biol Chem 266:11436–11441

    PubMed  CAS  Google Scholar 

  66. Moutsiakis D, Mancuso P, Krutzsch H et al (1992) Characterization of metalloproteinases and tissue inhibitors of metalloproteinases in human plasma. Connect Tissue Res 28:213–230. doi:10.3109/03008209209015038

    Article  PubMed  CAS  Google Scholar 

  67. Makela M, Salo T, Uitto VJ et al (1994) Matrix metalloproteinases (MMP-2 and MMP-9) of the oral cavity: cellular origin and relationship to periodontal status. J Dent Res 73:1397–1406

    PubMed  CAS  Google Scholar 

  68. Mautino G, Oliver N, Chanez P et al (1997) Increased release of matrix metalloproteinase-9 in bronchoalveolar lavage fluid and by alveolar macrophages of asthmatics. Am J Respir Cell Mol Biol 17:583–591

    PubMed  CAS  Google Scholar 

  69. Toth M, Gervasi DC, Fridman R (1997) Phorbol ester-induced cell surface association of matrix metalloproteinase-9 in human MCF10A breast epithelial cells. Cancer Res 57:3159–3167

    PubMed  CAS  Google Scholar 

  70. Upadhya AG, Harvey RP, Howard TK et al (1997) Evidence of a role for matrix metalloproteinases in cold preservation injury of the liver in humans and in the rat. Hepatology 26:922–928. doi:10.1002/hep.510260418

    Article  PubMed  CAS  Google Scholar 

  71. Gonzalez-Avila G, Iturria C, Vadillo-Ortega F et al (1998) Changes in matrix metalloproteinases during the evolution of interstitial renal fibrosis in a rat experimental model. Pathobiology 66:196–204. doi:10.1159/000028023

    Article  PubMed  CAS  Google Scholar 

  72. Yan L, Borregaard N, Kjeldsen L et al (2001) The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem 276:37258–37265. doi:10.1074/jbc.M106089200

    Article  PubMed  CAS  Google Scholar 

  73. Hibbs MS, Hoidal JR, Kang AH (1987) Expression of a metalloproteinase that degrades native type V collagen and denatured collagens by cultured human alveolar macrophages. J Clin Invest 80:1644–1650. doi:10.1172/JCI113253

    Article  PubMed  CAS  Google Scholar 

  74. Olson MW, Bernardo MM, Pietila M et al (2000) Characterization of the monomeric and dimeric forms of latent and active matrix metalloproteinase-9. Differential rates for activation by stromelysin 1. J Biol Chem 275:2661–2668. doi:10.1074/jbc.275.4.2661

    Article  PubMed  CAS  Google Scholar 

  75. Cha H, Kopetzki E, Huber RH et al (2002) Structural basis of the adaptive molecular recognition by MMP9. J Mol Biol 320:1065–1079

    Article  PubMed  CAS  Google Scholar 

  76. Opdenakker G, Masure S, Proost P et al (1991) Natural human monocyte gelatinase and its inhibitor. FEBS Lett 284:73–78. doi:10.1016/0014-5793(91)80765-U

    Article  PubMed  CAS  Google Scholar 

  77. Masure S, Proost P, Van Damme J et al (1991) Purification and identification of 91-kDa neutrophil gelatinase. Release by the activating peptide interleukin-8. Eur J Biochem 198:391–398. doi:10.1111/j.1432-1033.1991.tb16027.x

    Article  PubMed  CAS  Google Scholar 

  78. Opdenakker G, Masure S, Grillet B et al (1991) Cytokine-mediated regulation of human leukocyte gelatinases and role in arthritis. Lymphokine Cytokine Res 10:317–324

    PubMed  CAS  Google Scholar 

  79. Hofmann UB, Westphal JR, Waas ET et al (1999) Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression. Br J Cancer 81:774–782. doi:10.1038/sj.bjc.6690763

    Article  PubMed  CAS  Google Scholar 

  80. Tsuchiya Y, Sato H, Endo Y et al (1993) Tissue inhibitor of metalloproteinase-1 is a negative regulator of the metastatic ability of a human gastric cancer cell line, KKLS, in the chick embryo. Cancer Res 53:1397–1402

    PubMed  CAS  Google Scholar 

  81. Yamauchi K, Ogata Y, Nagase H et al (2001) Inhibition of liver metastasis from orthotopically implanted colon cancer in nude mice by transfection of the TIMP-1 gene into KM12SM cells. Surg Today 31:791–798. doi:10.1007/s005950170049

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Stanley Zucker for critical review and advice on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexios J. Aletras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlaki, M., Giannopoulou, E., Niarakis, A. et al. Walker 256 cancer cells secrete tissue inhibitor of metalloproteinase-free metalloproteinase-9. Mol Cell Biochem 328, 189–199 (2009). https://doi.org/10.1007/s11010-009-0089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0089-2

Keywords

Navigation