Skip to main content
Log in

Oxidative stress enhances phosphorylation of p53 in neonatal rat cardiomyocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

p53 is an important regulator of cell growth and apoptosis and its activity is regulated by phosphorylation. Accordingly, in neonatal rat cardiomyocytes we examined the involvement of p53 in H2O2-induced apoptosis. Treatment with 50–100 μM H2O2 markedly induced apoptosis in cardiomyocytes, as assessed by gel electrophoresis of genomic DNA. To examine whether H2O2 increases p53 phosphorylation in cardiomyocytes, we utilized an antibody that specifically recognizes phosphorylated p53 at serine-15. The level of phosphorylated p53 was markedly increased by 100 μM H2O2 at 30 and 60 min. Using specific protein kinase inhibitors we examined the involvement of protein kinases in p53 phosphorylation in response to H2O2 treatment. However, staurosporine, a broad spectrum inhibitor of protein kinases, SB202190, a specific p38 kinase inhibitor, PD98059, a MAP kinase inhibitor, wortmannin, an inhibitor of DNA-PK and PI3 kinase, SP600125, a JNK inhibitor and caffeine,an inhibitor of ATM and ATR, failed to prevent the H2O2-induced phosphorylation of p53. cDNA microarray revealed that H2O2 markedly increased expression of several p53 upstream modifiers such as the p300 coactivator protein and several downstream effectors such as gadd45, but decreased the expression of MDM2, a negative regulator of p53. Our results suggest that phosphorylation of p53 at serine-15 may be an important signaling event in the H2O2-mediated apoptotic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. von Harsdorf R, Li PF, Dietz R (1999) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99:2934–2941

    Google Scholar 

  2. Aoki H, Kang PM, Hampe J et al (2002) Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem 277:10244–10250

    Article  PubMed  CAS  Google Scholar 

  3. Dougherty CJ, Kubasiak LA, Frazier DP et al (2004) Mitochondrial signals initiate the activation of c-Jun N-terminal kinase (JNK) by hypoxia-reoxygenation. FASEB J 18:1060–1070

    Article  PubMed  CAS  Google Scholar 

  4. Long X, Goldenthal MJ, Wu GM, Marin-Garcia J (2004) Mitochondrial Ca2+ flux and respiratory enzyme activity decline are early events in cardiomyocyte response to H2O2. J Mol Cell Cardiol 37:63–70

    Article  PubMed  CAS  Google Scholar 

  5. Kastan MB, Canman CE, Leonard CJ (1995) p53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev 14:3–15

    Article  PubMed  CAS  Google Scholar 

  6. Agarwal ML, Taylor WR, Chernov MV, Chernova OB, Stark G (1998) The p53 network. J Biol Chem 273:1–4

    Article  PubMed  CAS  Google Scholar 

  7. Kussie PH, Gorina S, Marechal V et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    Article  PubMed  CAS  Google Scholar 

  8. Thut CJ, Goodrich JA, Tjian R (1997) Repression of p53-mediated transcription by MDM2: a dual mechanism. Genes Dev 11:1974–1986

    PubMed  CAS  Google Scholar 

  9. Moll UM, Zaika A (2001) Nuclear and mitochondrial apoptosis pathways of p53. FEBS Lett 493:65–69

    Article  PubMed  CAS  Google Scholar 

  10. Moll UM, Marchenko N, Zhang XK (2006) p53 and Nur77/TR3—transcription factors that directly target mitochondria for cell death induction. Oncogene 25:4725–4743

    Article  PubMed  CAS  Google Scholar 

  11. Pierzchalski P, Reiss K, Cheng W et al (1997) p53 Induces myocyte apoptosis via the activation of the renin-angiotensin system. Exp Cell Res 234:57–65

    Article  PubMed  CAS  Google Scholar 

  12. Long X, Crow MT, Sollott SJ et al (1998) Enhanced expression of p53 and apoptosis induced by blockade of the vacuolar proton ATPase in cardiomyotes. J Clin Invest 101:1453–1461

    PubMed  CAS  Google Scholar 

  13. Leri A, Claudio PP, Li Q et al (1998) Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest 101:1326–1342

    Article  PubMed  CAS  Google Scholar 

  14. Liu G, Chen X (2006) Regulation of the p53 transcriptional activity. J Cell Biochem 97:448–458

    Article  PubMed  CAS  Google Scholar 

  15. Chipuk JE, Kuwana T, Bouchier-Hayes L et al (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014

    Article  PubMed  CAS  Google Scholar 

  16. Steegenga WT, van der Eb AJ, Jochemsen AG (1996) How phosphorylation regulates the activity of p53. J Mol Biol 263:103–113

    Article  PubMed  CAS  Google Scholar 

  17. Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation:emerging patterns from divergent signals. Genes Dev 12:2973–2983

    PubMed  CAS  Google Scholar 

  18. Huang C, Ma WY, Maxiner A, Sun Y, Dong Z (1999) p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J Biol Chem 274:12229–12235

    Article  PubMed  CAS  Google Scholar 

  19. Takenaka I, Morin F, Seizinger BR, Kley N (1995) Regulation of the sequence-specific DNA binding function of p53 by protein kinase C and protein phosphatases. J Biol Chem 270:5405–5411

    Article  PubMed  CAS  Google Scholar 

  20. Meek DW, Simon S, Kikkawa U, Eckhart W (1990) The p53 tumor suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J 9:3253–3260

    PubMed  CAS  Google Scholar 

  21. Lees-Miller SP, Sakaguchi K, Ullrich SJ, Appella E, Anderson CW (1992) Human DNA-activated protein kinase phosphorylates serine 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol 12:5041–5049

    PubMed  CAS  Google Scholar 

  22. Banin S, Moyal L, Shieh S-Y et al (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677

    Article  PubMed  CAS  Google Scholar 

  23. Canman CE, Lim D-S, Cimprich KA et al (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677–1679

    Article  PubMed  CAS  Google Scholar 

  24. Tibbetts RS, Brumbaugh KM, Williams JM et al (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13:152–157

    PubMed  CAS  Google Scholar 

  25. Shieh S-Y, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334

    Article  PubMed  CAS  Google Scholar 

  26. Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R, Brady JN (1998) Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem 273:33048–33053

    Article  PubMed  CAS  Google Scholar 

  27. McNeill-Blue C, Wetmore BA, Sanchez JF, Freed WJ, Alex Merrick B (2006) Apoptosis mediated by p53 in rat neural AF5 cells following treatment with hydrogen peroxide and staurosporine. Brain Res 1112:1–15

    Article  PubMed  CAS  Google Scholar 

  28. van Heerde WL, Robert-Offerman S, Dumont E et al (2000) Markers of apoptosis in cardiovascular tissues: focus on Annexin V. Cardiovasc Res 45:549–559

    Article  PubMed  Google Scholar 

  29. Zhan Q, Carrier F, Fornace AJ (1993) Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol Cell Biol 13:4242–4250

    PubMed  CAS  Google Scholar 

  30. Sheikh MS, Hollander MC, Fornance AJ (2000) Role of Gadd45 in apoptosis. Biochem Pharmacol 59:43–45

    Article  PubMed  CAS  Google Scholar 

  31. Chandel NS, Vander Heiden MG, Thompson CB, Schumacker P (2000) Redox regulation of p53 during hypoxia. Oncogene 19:3840–3848

    Article  PubMed  CAS  Google Scholar 

  32. Ashcroft M, Kubbutat MH, Vousden KH (1999) Regulation of p53 function and stability by phosphorylation. Mol Cell Biol 19:1751–1758

    PubMed  CAS  Google Scholar 

  33. Unger T, Sionov RV, Moallem E et al (1999) Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene 18:3205–3212

    Article  PubMed  CAS  Google Scholar 

  34. Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB (1997) DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11:3471–3481

    PubMed  CAS  Google Scholar 

  35. She QB, Chen N, Dong Z (2000) ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275:20444–20449

    Article  PubMed  CAS  Google Scholar 

  36. Chen K, Albano A, Ho A, Keaney JF (2003) Activation of p53 by oxidative stress involves platelet-derived growth factor-beta receptor-mediated ataxia telangiecta-sia mutated (ATM) kinase activation. J Biol Chem 278:39527–39533

    Article  PubMed  CAS  Google Scholar 

  37. Karin M, Hunter T (1995) Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 5:747–757

    Article  PubMed  CAS  Google Scholar 

  38. Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–236

    Article  PubMed  CAS  Google Scholar 

  39. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271:4138–4142

    Article  PubMed  CAS  Google Scholar 

  40. Treisman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8:205–215

    Article  PubMed  CAS  Google Scholar 

  41. Cobb MH, Goldsmith EJ (1995) How MAP kinases are regulated. J Biol Chem 270:14843–14846

    Article  PubMed  CAS  Google Scholar 

  42. Bulavin DV, Saito S, Hollander MC et al (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854

    Article  PubMed  CAS  Google Scholar 

  43. Jackson SP (1997) DNA-dependent protein kinase. Int J Biochem Cell Biol 29:935–938

    Article  PubMed  CAS  Google Scholar 

  44. Keith CT, Schreiber S (1995) PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270:50–51

    Article  PubMed  CAS  Google Scholar 

  45. Jimenez GS, Bryntesson F, Torres-Arzayus MI et al (1999) DNA-dependent protein kinase is not required for the p53-dependent response to DNA damage. Nature 400:81–83

    Article  PubMed  CAS  Google Scholar 

  46. Toth A, Jeffers JR, Nickson P et al (2006) Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia-reperfusion. Am J Physiol Heart Circ Physiol 291: H52–H60

    Article  PubMed  CAS  Google Scholar 

  47. Kemp TJ, Causton HC, Clerk A (2003) Changes in gene expression induced by H2O2 in cardiac myocytes. Biochem Biophys Res Commun 307:416–421

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the Grant-in-Aid from the American Heart Association (to X. Long) and The Molecular Cardiology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, X., Goldenthal, M.J. & Marín-García, J. Oxidative stress enhances phosphorylation of p53 in neonatal rat cardiomyocytes. Mol Cell Biochem 303, 167–174 (2007). https://doi.org/10.1007/s11010-007-9470-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9470-1

Keywords

Navigation