Skip to main content
Log in

Differential Involvement of Mitochondrial Permeability Transition in Cytotoxicity of 1-Methyl-4-Phenylpyridinium and 6-Hydroxydopamine

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Defects in mitochondrial function have been shown to participate in the induction of neuronal cell injury. The aim of the present study was to assess the influence of the mitochondrial membrane permeability transition inhibition against the toxicity of 1-methyl-4-phenylpyridinium (MPP+) and 6-hydroxydopamine (6-OHDA) in relation to the mitochondria-mediated cell death process and role of oxidative stress. Both MPP+ and 6-OHDA induced the nuclear damage, the changes in the mitochondrial membrane permeability, leading to the cytochrome c release and caspase-3 activation, the formation of reactive oxygen species and the depletion of GSH in differentiated PC12 cells. Cyclosporin A (CsA), trifluoperazine and aristolochic acid, inhibitors of mitochondrial permeability transition, significantly attenuated the MPP+-induced mitochondrial damage leading to caspase-3 activation, increased oxidative stress and cell death. In contrast to MPP+, the cytotoxicity of 6-OHDA was not reduced by the addition of the mitochondrial permeability transition inhibitors. The results show that the cytotoxicity of MPP+ may be mediated by the mitochondrial permeability transition formation, which is associated with formation of reactive oxygen species and the depletion of GSH. In contrast, the 6-OHDA-induced cell injury appears to be mediated by increased oxidative stress without intervention of the mitochondrial membrane permeability transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jenner P: Oxidative stress in Parkinson's disease. Ann Neurol 53 (suppl. 3): S26–S38, 2003

  2. Glinka Y, Youdim MBH: Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. Eur J Pharmacol 292: 329–332, 1995

    PubMed  CAS  Google Scholar 

  3. Przedborski S, Jackson-Lewis V: Mechanism of MPTP toxicity. Mov Disord 13: 35–38, 1998

    PubMed  Google Scholar 

  4. Mignotte B, Vayssière JL: Mitochondria and apoptosis. Eur J Biochem 252: 1–15, 1998

    Article  PubMed  CAS  Google Scholar 

  5. Polster BM, Fiskum G: Mitochondrial mechanisms of neural cell apoptosis. J Neurochem 90: 1281–1289, 2004

    Article  PubMed  CAS  Google Scholar 

  6. Matsuura K, Kabuto H, Makino H, Ogawa N: Cyclosporine A attenuates degeneration of dopaminergic neurons induced by 6-hydroxydopamine in the mouse brain. Brain Res 733: 101–104, 1996

    Article  PubMed  CAS  Google Scholar 

  7. Cassarino DS, Parks JK, Parker Jr WD, Bennett Jr JP: The Parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim Biophys Acta 1453: 49 –62, 1999

    Google Scholar 

  8. Lee CS, Han JH, Jang YY, Song JH, Han ES: Differential effect of catecholamines and MPP+ on membrane permeability in brain mitochondria and cell viability in PC12 cells. Neurochem Int 40: 361 –369, 2002

    Article  PubMed  CAS  Google Scholar 

  9. Lee CS, Song EH, Park SY, Han ES: Combined effect of dopamine and MPP+ on membrane permeability in mitochondria and cell viability in PC12 cells. Neurochem Int 43: 147 –154, 2003

    Article  PubMed  CAS  Google Scholar 

  10. Rojas P, Rios C: Increased striatal lipid peroxidation after intracerebroventricular MPP+ administration to mice. Pharamcol Toxicol 72: 364 –368, 1993

    Google Scholar 

  11. Obata T: Dopamine efflux by MPTP and hydroxyl radical generation. J Neural Transm 109: 1159–1180, 2002

    Google Scholar 

  12. Fonck C, Baudry M: Toxic effects of MPP+ and MPTP in PC12 cells independent of reactive oxygen species formation. Brain Res 905: 199 –206, 2001

    Article  PubMed  CAS  Google Scholar 

  13. Kim DH, Jang YY, Han ES, Lee CS: Protective effect of harmaline and harmalol against dopamine- and 6-hydroxydopamine-induced oxidative damage of brain mitochondria and synaptosomes, and viability loss of PC12 cells. Eur J Neurosci 13: 1861–1872, 2001

    Article  PubMed  CAS  Google Scholar 

  14. Jordán J, Galindo MF, Tornero D, González-García C, Ceňa V: Bcl-x L blocks mitochondrial multiple conductance channel activation and inhibits 6-OHDA-induced death in SH-SY5Y cells. J Neurochem 89: 124–133, 2004

    Article  PubMed  Google Scholar 

  15. Jemmerson R, Dubinsky JM, Brustovetsky N: Cytochrome c release from CNS mitochondria and potential for clinical intervention in apoptosis-mediated CNS diseases. Antioxid Redox Signal 7: 1158–1172, 2005

    Article  PubMed  CAS  Google Scholar 

  16. Lemasters JJ, Qian T, Trost LC, Herman B, Cascio WE, Bradham CA, Brenner DA, Nieminen AL: Confocal microscopy of the mitochondrial permeability transition in necrotic and apoptotic cell death. Biochem Soc Symp 66: 205–222, 1999

    PubMed  CAS  Google Scholar 

  17. Steinmetz RD, Firla B, Steinhilber D: Inhibition of the functional expression of N-methyl-D-aspartate receptors in a stably transformed cell line by cyclosporine A. Biochem Pharmacol 68: 563–571, 2004

    Article  PubMed  CAS  Google Scholar 

  18. Seaton TA, Cooper JM, Schapira AHV: Cyclosporin inhibition of apoptosis induced by mitochondrial complex I toxins. Brain Res 809: 12–17, 1998

    Article  PubMed  CAS  Google Scholar 

  19. Fall CP, Bennett Jr JP: MPP+ induced SH-SY5Y apoptosis is potentiated by cyclosporin A and inhibited by aristolochic acid. Brain Res 811: 143 –146, 1998

    Article  PubMed  CAS  Google Scholar 

  20. Galindo MF, Jordán J, González-García C, Ceňa V: Chromaffin cell death induced by 6-hydroxydopamine is independent of mitochondrial swelling and caspase activation. J Neurochem 84: 1066–1073, 2003

    Article  PubMed  CAS  Google Scholar 

  21. Tatton WG, Chalmers-Redman RME, Ju WJH, Mammen M, Carlile GW, Pong AW, Tatton NA: Propargylamines induce antiapoptotic new protein synthesis in serum-and nerve growth factor (NGF)-withdrawn, NGF-differentiated PC-12 cells. J Pharmacol Exp Ther 301: 753–764, 2002

    Article  PubMed  CAS  Google Scholar 

  22. Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55–63, 1983

    Article  PubMed  CAS  Google Scholar 

  23. Oberhammer FA, Pavelka M, Sharma S, Tiefenbacher R, Purchio AF, Bursch W, Schulte-Hermann R: Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor β1. Proc Natl Acad Sci USA 89: 5408–5412, 1992

    Article  PubMed  CAS  ADS  Google Scholar 

  24. Isenberg JS, Klaunig JE: Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells. Toxicol Sci 53: 340–351, 2000

    Article  PubMed  CAS  Google Scholar 

  25. Fu W, Luo H, Parthasarathy S, Mattson MP: Catecholamines potentiate amyloid β-peptide neurotoxicity: involvement of oxidative stress, mitochondrial dysfunction, and perturbed calcium homeostasis. Neurobiol Dis 5: 229–243, 1998

    Article  PubMed  CAS  Google Scholar 

  26. van Klaveren RJ, Hoet PH, Pype JL, Demedts M, Nemery B: Increase in gamma-glutamyltransferase by glutathione depletion in rat type II pneumocytes. Free Radic Biol Med 22: 525–534, 1997

    Article  PubMed  CAS  Google Scholar 

  27. Abramova NA, Cassarino DS, Khan SM, Painter TW, Bennett Jr JP: Inhibition of R(+) or S(−) pramipexole of caspase activation and cell death induced by methylpyridinium ion or beta amyloid peptide in SH-SY5Y neuroblastoma. J Neurosci Res 67: 494–500, 2000

    Article  Google Scholar 

  28. Lo MY, Kim HT: Chondrocyte apoptosis induced by hydrogen peroxide requires caspase activation but not mitochondrial pore transition. J Orthopaedic Res 22: 1120–1125, 2004

    Article  CAS  Google Scholar 

  29. Tan S, Sagara Y, Liu Y, Maher P, Schubert D: The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141: 1423–1432, 1998

    Article  PubMed  CAS  Google Scholar 

  30. Chandra J, Samali A, Orrenius S: Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29: 323–333, 2000

    Article  PubMed  CAS  Google Scholar 

  31. Berman SB, Hastings TG: Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson's disease. J Neurochem 73: 1127–1137, 1999

    Article  PubMed  CAS  Google Scholar 

  32. Lotharius J, Dugan LL, O'Malley KL: Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci 19: 1284–1293, 1999

    PubMed  CAS  Google Scholar 

  33. Mazzio EA, Reams RR, Soliman KF: The role of oxidative stress, impaired glycolysis and mitochondrial respiratory redox failure in the cytotoxic effects of 6-hydroxydopamine in vitro. Brain Res 1004: 29–44, 2004

    Article  PubMed  CAS  Google Scholar 

  34. Park TH, Kwon OS, Park SY, Han ES, Lee CS: N-methylated β-carbolines protect PC12 cells from cytotoxic effect of MPP+ by attenuation of mitochondrial membrane permeability change. Neurosci Res 46: 349 –358, 2003

    Article  PubMed  CAS  Google Scholar 

  35. Benaim G, Villalobo A: Phosphorylation of calmodulin. Functional implications. Eur J Biochem 269: 3619–3631, 2002

    Article  PubMed  CAS  Google Scholar 

  36. Yaglom JA, Ekhterae D, Gabai VL, Sherman MT: Regulation of necrosis of H9c2 myogenic cells upon transient energy deprivation. J Biol Chem 278: 50483–50496, 2003

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.S., Park, W.J., Ko, H.H. et al. Differential Involvement of Mitochondrial Permeability Transition in Cytotoxicity of 1-Methyl-4-Phenylpyridinium and 6-Hydroxydopamine. Mol Cell Biochem 289, 193–200 (2006). https://doi.org/10.1007/s11010-006-9164-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9164-0

Keywords

Navigation