Skip to main content

Advertisement

Log in

A social–ecological approach to landscape epidemiology: geographic variation and avian influenza

  • REVIEW ARTICLE
  • Published:
Landscape Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 07 May 2015

Abstract

Context

Landscape structure influences host–parasite–pathogen dynamics at multiple scales in space and time. Landscape epidemiology, which connects disease ecology and landscape ecology, is still an emerging field.

Objective

We argue that landscape epidemiology must move beyond simply studying the influence of landscape configuration and composition on epidemiological processes and towards a more comparative, systems approach that better incorporates social–ecological complexity.

Methods

We illustrate our argument with a detailed review, based on a single conceptual systems model, of geographic variation in drivers of avian influenza in Western Europe, Southeast Asia, and Southern Africa.

Results

Our three study regions are similar in some ways but quite different in others. The same underlying mechanisms apply in all cases, but differences in the attributes of key components and linkages (most notably avian diversity, the abiotic environment, land use and land cover, and food production systems) create significant differences in avian influenza virus prevalence and human risk between regions.

Conclusions

Landscape approaches can connect local- and continental-scale elements of epidemiology. Adopting a landscape-focused systems perspective on the problem facilitates the identification of the most important commonalities and differences, guiding both science and policy, and helps to identify elements of the problem on which further research is needed. More generally, our review demonstrates the importance of social–ecological interactions and comparative approaches for landscape epidemiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abolnik C, Cornelius E, Bisschop SPR, Romito M, Verwoerd D (2006) Phylogenetic Analyses of genes from South Africa LPAI Viruses isolated in 2004 from Wild Aquatic Birds suggests Introduction by Eurasian migrants. In: Schudel A, Lombard M (eds) OIE/FAO international scientific conference on avian influenza, Basel, Karger 2006, vol 124, pp 189–199

  • Abolnik C, Bisschop S, Gerdes T, Olivier A, Horner R (2007) Outbreaks of avian influenza H6N2 viruses in chickens arose by a reassortment of H6N8 and H9N2 ostrich viruses. Virus Genes 34:37–45

    CAS  PubMed  Google Scholar 

  • Abolnik C, Olivier AJ, Grewar J, Gers S, Romito M (2012) Molecular analysis of the 2011 HPAI H5N2 outbreak in ostriches, South Africa. Avian Dis 56:865–879

    CAS  PubMed  Google Scholar 

  • Abu-Raddad LJ, Patnaik P, Kublin JG (2006) Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa. Science 314(5805):1603–1606

    CAS  PubMed  Google Scholar 

  • Altman I, Byers JE (2014) Large-scale spatial variation in parasite communities influenced by anthropogenic factors. Ecology 95(7):1876–1887

    PubMed  Google Scholar 

  • ASEAN (2010) Prevention, control and eradication of avian influenza in ASEAN: strategies and success stories. Jakarta. http://www.asean.org. Accessed 9 March 2015

  • Bhushan B, Fry G, Hibi A, Mundkur T, Prawiradilaga DM, Sonobe K, Usui S, Taniguchi T (1993) A field guide to the waterbirds of Asia. Wild Bird Society of Japan, Tokyo

  • Biancotto A, Iglehart SJ, Lisco A, Vanpouille C, Grivel J-C, Lurain NS, Reichelderfer PS, Margolis LB (2008) Upregulation of human cytomegalovirus by HIV type 1 in human lymphoid tissue ex vivo. AIDS Res Hum Retrovir 24(3):453–462

  • Both C (2010) Flexibility of timing of avian migration to climate change masked by environmental constraints en route. Curr Biol 20(3):243–248

    CAS  PubMed  Google Scholar 

  • Breban R, Drake JM, Stallknecht DE, Rohani P (2009) The role of environmental transmission in recurrent avian influenza epidemics. PLoS Comput Biol 5(4):e1000346

    PubMed Central  PubMed  Google Scholar 

  • British Trust for Ornithology (2014). http://www.bto.org/about-birds/birdfacts/bird-families/waterfowl. Accessed 27 Feb 2015

  • Brown JD, Swayne DE, Cooper RJ, Burns RE, Stallknecht DE (2007) Persistence of H5 and H7 avian influenza viruses in water. Avian Dis 50:285–289

    Google Scholar 

  • Brown JD, Goekjian G, Poulson R, Valeika S, Stallknecht DE (2009) Avian influenza virus in water: infectivity is dependent on pH, salinity and temperature. Vet Microbiol 136(1–2):20–26

    PubMed  Google Scholar 

  • Burger CE, Abolnik C, Fosgate GT (2012) Antibody response and viral shedding profile of Egyptian geese (Alopochen aegyptiacus) infected with low pathogenicity H7N1 and H6N8 avian influenza viruses. Avian Dis 56(2):341–346

    PubMed  Google Scholar 

  • Burgos S, Otte J, Roland-Holst D (2010) In: FAO (ed) Poultry, HPAI and livelihoods in Myanmar—a review. FAO, Roma

    Google Scholar 

  • Cardona C, Yee K, Carpenter T (2009) Are live bird markets reservoirs of avian influenza? Poult Sci 88(4):856–859

    CAS  PubMed  Google Scholar 

  • Caron A, Gaidet N, de Garine-Wichatitsky M, Morand S, Cameron EZ (2009) Evolutionary biology, community ecology and avian influenza research. Infect Genet Evol 9:298–303

    PubMed  Google Scholar 

  • Caron A, de Garine-Wichatitsky M, Gaidet N, Chiweshe N, Cumming GS (2010) Estimating dynamic risk factors for pathogen transmission using community-level bird census data at the wildlife/domestic interface. Ecol Soc 15(3):25

    Google Scholar 

  • Caron A, Abolnik C, Mundava, Gaidet N, Burger CE, Mochotlhoane B, Bruinzeel L, Chiweshe N, de Garine-Wichatitsky M, Cumming GS (2011) Persistence of low pathogenic avian influenza virus in waterfowl in a Southern African ecosystem. EcoHealth 8(1):109–115

  • Costa TP, Brown JD, Howerth EW, Stallknecht DE (2011) Variation in viral shedding patterns between different wild bird species infected experimentally with low-pathogenicity avian influenza viruses that originated from wild birds. Avian Pathol 40(2):119–124

    PubMed  Google Scholar 

  • Costa-Hurtado M, Afonso CL, Miller PJ, Spackman E, Kapczynski DR, Swayne DE, Shepherd E, Smith D, Zsak A, Pantin-Jackwood M (2014) Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys. Vet Res 45(1):1

  • Cumming GS (2007a) Global biodiversity scenarios and landscape ecology. Landscape Ecol 22:671–685

    Google Scholar 

  • Cumming GS (2007b) Global biodiversity scenarios and landscape ecology. Landscape Ecol 22(5):671–685

    Google Scholar 

  • Cumming GS (2011a) The resilience of big river basins. Water Int 36(1):63–95

    Google Scholar 

  • Cumming GS (2011b) Spatial resilience in social–ecological systems. Springer, Dordrecht

    Google Scholar 

  • Cumming GS (2011c) Spatial resilience: integrating landscape ecology, resilience, and sustainability. Landscape Ecol 26(7):899–909

    Google Scholar 

  • Cumming GS, Caron A, Abolnik C, Catolli G, Bruinzeel L, Burger CE, Cecchettin K, Chiweshe N, Mochotlhoane B, Mutumi G, Ndlovu M (2011) The ecology of influenza A viruses in wild birds in Southern Africa. EcoHealth 8(1):4–13

  • Cumming GS, Gaidet N, Ndlovu M (2012a) Towards a unification of movement ecology and biogeography: conceptual framework and a case study on Afrotropical ducks. J Biogeogr 39(8):1401–1411

    Google Scholar 

  • Cumming GS, Paxton M, King J, Beuster H (2012b) Foraging guild membership explains variation in waterbird responses to the hydrological regime of an arid-region flood-pulse river in Namibia. Freshw Biol 57(6):1202–1213

    Google Scholar 

  • Cumming GS, Ndlovu M, Mutumi GL, Hockey PA (2013) Responses of an African wading bird community to resource pulses are related to foraging guild and food-web position. Freshw Biol 58(1):79–87

    Google Scholar 

  • DAFF (2011) In: Department of Agriculture, Fisheries and Forestry (ed) A profile of the South African ostrich market value chain. Department of Agriculture, Fisheries and Forestry, Pretoria

    Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287:443–449

    CAS  PubMed  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2001a) Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 78(2):103–116

    CAS  PubMed  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2001b) Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 78:103–116

    CAS  PubMed  Google Scholar 

  • Daszak P, Plowright R, Epstein J, Pulliam J, Abdul Rahman S, Field H, Smith C, Olival K, Luby S, Halpin K (2006) The emergence of Nipah and Hendra virus: pathogen dynamics across a wildlife–livestock–human continuum. In: Disease ecology: community structure and pathogen dynamics. Oxford University Press, Oxford, pp 186–201

  • Desvaux S, Grosbois V, Pham TTH, Fenwick S, Tollis S, Pham NH, Tran A, Roger F (2011) Risk factors of highly pathogenic avian influenza H5N1 occurrence at the village and farm levels in the Red River Delta region in Vietnam. Transbound Emerg Dis 58:492–502

  • Dilley M (2000) Reducing vulnerability to climate variability in Southern Africa: the growing role of climate information. Clim Change 45(1):63–73

    Google Scholar 

  • Dobson A, Foufopoulos J (2001) Emerging infectious pathogens of wildlife. Philos Trans R Soc Lond B 356(1411):1001–1012

    CAS  Google Scholar 

  • Dobson A, Lafferty KD, Kuris AM, Hechinger RF, Jetz W (2008) Homage to Linnaeus: how many parasites? How many hosts? Proc Natl Acad Sci USA 105:11482–11489

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32(1):66–77

    Google Scholar 

  • Elliott P, Wartenberg D (2004) Spatial epidemiology: current approaches and future challenges. Environ Health Perspect 112(9):998–1006

    PubMed Central  PubMed  Google Scholar 

  • Ellis TM, Bousfield RB, Bissett LA, Dyrting KC, Luk GS, Tsim ST, Sturm-Ramirez K, Webster RG, Guan Y, Malik Peiris JS (2004) Investigation of outbreaks of highly pathogenic H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late 2002. Avian Pathol 33(5):492–505

  • European Food and Safety Authority (2006) Scientific opinion of the panel on animal health and welfare on a request from the European Commission on migratory birds and their possible role in the spread of highly pathogenic avian influenza. EFSA J 357:1–46

    Google Scholar 

  • European Food and Safety Authority (2008) Animal health and welfare aspects of avian influenza and the risk of its introduction into the EU poultry holdings: scientific opinion of the Panel on Animal Health and Welfare. EFSA J 715:1–161

    Google Scholar 

  • FAO (2008) In: FAO (ed) The global strategy for prevention and control of H5N1 highly pathogenic avian influenza. FAO, Roma

    Google Scholar 

  • FAOSTAT (2013). Statistical yearbook of the Food and Agriculture Organization of the United Nations. http://faostat3.fao.org/home/E. Accessed 9 March 2015

  • Feare CJ, Kato T, Thomas R (2010) Captive rearing and release of bar-headed geese (Anser indicus) in China: a possible HPAI H5N1 virus infection route to wild birds. J Wildl Dis 46(4):1340–1342

    PubMed  Google Scholar 

  • Fenichel EP, Kuminoff NV, Chowell G (2013) Skip the trip: air Travelers’ behavioral responses to pandemic influenza. PLoS ONE 8(3):e58249

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fermet-Quinet E, Bussière C (2007) Small commercial and family poultry production in France: characteristics, and impact of HPAI regulations. FAO Smallholder Poultry Production Paper. Rome

  • Figuié M (2013) Global health risks and cosmopolitisation: from emergence to interference. Sociol Health Illn 35(2):227–240

    PubMed  Google Scholar 

  • Figuie M, Fournier T (2008) Avian influenza in Vietnam: chicken-hearted consumers? Risk Anal 28(2):441–451

    CAS  PubMed  Google Scholar 

  • Fouque C, Guillemain M, Benmergui M, Delacour G, Mondain-Monval JY, Schricke V (2007) Mute swan (Cygnus olor) winter distribution and numerical trends over a 16-year period (1987/1988–2002/2003) in France. J Ornithol 148(4):477–487

    Google Scholar 

  • Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge

    Google Scholar 

  • Gaidet N, Caron A, Cappelle J, Cumming GS, Balanca G, Hammoumi S, Cattoli G, Abolnik C, Servan de Almeida R, Gil P, Fereidouni S, Grosbois V, Tran A, Mundava J, Fofana B, Ould El Mamy AB, Ndlovu M, Mondain-Monval JY, Triplet P, Hagemeijer W, Karesh WB, Newman SH, Dodman T (2012a) Understanding the ecological drivers of avian influenza virus infection in wildfowl: a continental scale study across Africa. Proc R Soc B 279(1731):1131–1141

  • Gaidet N, Ould El Mamy AB, Cappelle J, Caron A, Cumming GS, Grosbois V, Gil P, Hammoumi S, Servan de Almeida R, Fereidouni SR, Cattoli G, Abolnik C, Mundava J, Fofana B, Ndlovu M, Hurtado RF, Newman SH, Dodman T, Balança G (2012b) Investigating avian influenza infection hotspots in old-world shorebirds. PLoS ONE 7(9):e46049

  • Galuzo I (1975) Landscape epidemiology (epizootiology). Adv Vet Sci Comp Med 19:73

    CAS  PubMed  Google Scholar 

  • Gardner AM, Lampman RL, Muturi EJ (2014) Land use patterns and the risk of West Nile virus transmission in central Illinois. Vector Borne Zoonotic Dis 14(5):338–345

    PubMed  Google Scholar 

  • Geist HJ, Lambin EF (2002) Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52(2):143–150

    Google Scholar 

  • Gilbert M, Pfeiffer DU (2012) Risk factor modelling of the spatio-temporal patterns of highly pathogenic avian influenza (HPAIV) H5N1: a review. Spat Spatio-temporal Epidemiol 3(3):173–183

    Google Scholar 

  • Gilbert M, Chaitaweesub P, Parakamawongsa T, Premashthira S, Tiensin T, Kalpravidh W, Wagner H, Slingenbergh J (2006) Free-grazing ducks and highly pathogenic avian influenza, Thailand. Emerg Infect Dis 12(2):227–234

  • Gilbert M, Xiao X, Chaitaweesub P, Kalpravidh W, Premashthira S, Boles S, Slingenbergh J (2007) Avian influenza, domestic ducks and rice agriculture in Thailand. Agric Ecosyst Environ 119(3–4):409–415

  • Gilbert M, Xiao X, Pfeiffer DU, Epprecht M, Boles S, Czarnecki C, Chaitaweesub P, Kalpravidh W, Minh PQ, Otte MJ, Martin V, Slingen J (2008) Mapping H5N1 highly pathogenic avian influenza in Southeast Asia. Proc Natl Acad Sci USA 105(12):4769–4774

  • Green AJ, Elmberg J (2014) Ecosystem services provided by waterbirds. Biol Rev 89(1):105–122

    PubMed  Google Scholar 

  • Grey D, Garrick D, Blackmore D, Kelman J, Muller M, Sadoff C (2013) Water security in one blue planet: twenty-first century policy challenges for science. Philos Trans R Soc A 371(2002):20120406

    CAS  Google Scholar 

  • Hahn MB, Gurley ES, Epstein JH, Islam MS, Patz JA, Daszak P, Luby SP (2014) The role of landscape composition and configuration on Pteropus giganteus roosting ecology and Nipah virus spillover risk in Bangladesh. Am J Trop Med Hyg 90(2):247–255

  • Herrick KA, Huettmann F, Lindgren MA (2013) A global model of avian influenza prediction in wild birds: the importance of northern regions. Vet Res 44(1):42

    PubMed Central  PubMed  Google Scholar 

  • Hirschfeld A, Heyd A (2005) Mortality of migratory birds caused by hunting in Europe: bag statistics and proposals for the conservation of birds and animal welfare. Ber zum Vogelschutz 42:47–74

    Google Scholar 

  • Hockey PAR (2000) Patterns and correlates of bird migrations in sub-Saharan Africa. Emu 100:401–417

    Google Scholar 

  • Hockey PAR, Dean WRJ, Ryan PG (2005) Roberts’ birds of Southern Africa. Russell Friedman Books CC, Pretoria

    Google Scholar 

  • Holt RD, Dobson A (2007) Extending the principles of community ecology to address the epidemiology of host–pathogen systems. In: Collinge SK, Ray C (eds) Disease ecology: community structure and pathogen dynamics. Oxford University Press, Oxford, pp 6–27

    Google Scholar 

  • Huntjens P, Pahl-Wostl C, Rihoux B, Schlüter M, Flachner Z, Neto S, Koskova R, Dickens C, Nabide Kiti I (2011) Adaptive water management and policy learning in a changing climate: a formal comparative analysis of eight water management regimes in Europe, Africa and Asia. Environ Policy Gov 21(3):145–163

  • Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS (2011) Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci 108(13):5354–5359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ito T, Goto H, Yamamoto E, Tanaka H, Takeuchi M, Kuwayama M, Kawaoka Y, Otsuki K (2001) Generation of a highly pathogenic avian influenza A virus from an avirulent field isolate by passaging in chickens. J Virol 75(9):4439–4443

  • Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes-Marraco S, Schutz F,. Zangger , Revaz-Breton M, Lye L-F, Hickerson SM, Beverley SM, Acha-Orbea H, Launois P, Fasel N, Masina S (2011) Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 331:775–778

  • Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY, McKeever D, Mutua F, Young J, McDermott J (2013) Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci 110(21):8399–8404

  • Keesing F, Young TP (2014) Cascading consequences of the loss of large mammals in an African savanna. Bioscience 64(6):487–495

    Google Scholar 

  • Kingsford RT, Jenkins KM, Porter JL (2004) Imposed hydrological stability on lakes in arid Australia and effects on waterbirds. Ecology 85(9):2478–2492

    Google Scholar 

  • Krauss S, Stallknecht DE, Negovetich NJ, Niles LJ, Webby RJ, Webster RG (2010) Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological ‘hot spot’ for influenza viruses. Proc R Soc B 277(1699):3373–3379

    PubMed Central  PubMed  Google Scholar 

  • Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PT, Kuris AM, Marcogliese DJ, Martinez ND, Memmott J, Marquet PA, McLaughlin JP, Mordecai EA, Pascual M, Poulin R, Thieltges DW (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11(6):533–546

  • Lambin EH, Geist HJ (2006) Land-Use and Land-Cover Change: local processes and global impacts. Springer, Berlin

    Google Scholar 

  • Lambin EF, Tran A, Vanwambeke SO, Linard C, Soti V (2010) Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int J Health Geogr 9(54):1–13

    Google Scholar 

  • Lane-deGraaf KE, Kennedy RC, Arifin SMN, Madey GR, Fuentes A, Hollocher H (2013) A test of agent-based models as a tool for predicting patterns of pathogen transmission in complex landscapes. BMC Ecol 13:35

    PubMed Central  PubMed  Google Scholar 

  • Latorre-Margalef N, Tolf C, Grosbois V, Avril A, Bengtsson D, Wille M, Osterhaus AD, Fouchier RA, Olsen B, Waldenström J (2014) Long-term variation in influenza A virus prevalence and subtype diversity in migratory mallards in northern Europe. Proc R Soc B 281(1781):20140098

  • Lehikoinen A, Jaatinen K, Vähätalo AV, Clausen P, Crowe O, Deceuninck B, Hearn R, Holt CA, Hornman M, Keller V, Nilsson L, Langendoen T, Tománková I, Wahl J, Fox AD (2013) Rapid climate driven shifts in wintering distributions of three common waterbird species. Glob Change Biol 19(7):2071–2081

  • Leibler JH, Otte J, Roland-Holst D, Pfeiffer DU, Soares Magalhaes R, Rushton J, Graham JP, Silbergeld EK (2009) Industrial food animal production and global health risks: exploring the ecosystems and economics of avian influenza. EcoHealth 6(1):58–70

  • Likens GE (2004) Some perspectives on long-term biogeochemical research from the Hubbard Brook ecosystem study. Ecology 85(9):2355–2362

    Google Scholar 

  • Liu C-M, Lin S-H, Chen Y-C, Lin KC-M, Wu T-SJ, King C-C (2007) Temperature drops and the onset of severe avian influenza A H5N1 virus outbreaks. PLoS ONE 2(2):e191

    PubMed Central  PubMed  Google Scholar 

  • Mangnall MJ, Crowe TM (2003) The effects of agriculture on farmland bird assemblages on the Agulhas Plain, Western Cape, South Africa. Afr J Ecol 41(3):266–276

    Google Scholar 

  • Massey RC, Buckling A, French-Constant R (2004) Interference competition and parasite virulence. Proc R Soc B 271:785–788

    PubMed Central  PubMed  Google Scholar 

  • Mather C, Marshall A (2011) Living with disease? Biosecurity and avian influenza in ostriches. Agric Hum Values 28(2):153–165

    Google Scholar 

  • Mathevet R (2000) Les usages des zones humides camarguaises: enjeux et dynamique des interactions environnement/usagers/territoire. Université J. Moulin Lyon 3, Lyon

    Google Scholar 

  • Mathevet R, Mesléard F (2002) The origins and functioning of the private wildfowling lease system in a major Mediterranean wetland: the Camargue (Rhone River Delta, Southern France). Land Use Policy 19(4):277–286

    Google Scholar 

  • McCullers JA (2006) Insights into the interaction between influenza virus and Pneumococcus. Clin Microbiol Rev 19(3):571–582

    PubMed Central  CAS  PubMed  Google Scholar 

  • McLeod A, Morgan N, Prakash A, Hinrichs J (2005) Economic and social impacts of avian influenza. In: Proceedings of the joint FAO/OMS/OIE/World Bank conference on avian influenza and human pandemic influenza, November 2005, pp 7–9

  • Meentemeyer RK, Haas SE, Václavík T (2012) Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annu Rev Phytopathol 50:379–402

    CAS  PubMed  Google Scholar 

  • Modjarrad K, Vermund SH (2010) Effect of treating co-infections on HIV-1 viral load: a systematic review. Lancet Infect Dis 10(7):455–463

    PubMed Central  PubMed  Google Scholar 

  • Mooij JH (2005) Protection and use of waterbirds in the European Union. Beitr zur Jagd- und Wildforschung 30:443–454

    Google Scholar 

  • Moore C, Cumming GS, Slingsby J, Grewar J (2014) Tracking socioeconomic vulnerability using network analysis: insights from an avian influenza outbreak in an ostrich production network. PLoS ONE 9(1):e86973

    PubMed Central  PubMed  Google Scholar 

  • Mundava J, Caron A, Gaidet N, Couto F, Couto T, de Garine-Wichatitksy M, Mundy P (2012) Factors influencing long-term and seasonal waterbird abundance and composition at two adjacent lakes in Zimbabwe. Ostrich 83(2):69–77

  • Mundkur T (2006) Successes and challenges of promoting conservation of migratory waterbirds and wetlands in the Asia–Pacific region: nine years of a regional strategy. In: Boere GC, Gailbraith CA, Stroud DA (eds) Waterbirds around the world. The Stationery Office, Edinburgh, pp 81–87

    Google Scholar 

  • Mussa T, Rodriguez-Cariño C, Sanchez-Chardi A, Baratelli M, Costa-Hurtado M, Fraile L, Dominguez J, Aragon V, Montoya M (2012) Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells. Vet Res 43(1):80

  • Myers SS, Gaffikin L, Golden CD, Ostfeld RS, Redford KH, Ricketts TH, Turner WR, Osofsky SA (2013) Human health impacts of ecosystem alteration. Proc Natl Acad Sci 110(47):18753–18760

  • Ngom EHM, Ndione J-A, Ba Y, Konate L, Faye O, Diallo M, Dia I (2013) Spatio-temporal analysis of host preferences and feeding patterns of malaria vectors in the sylvo-pastoral area of Senegal: impact of landscape classes. Parasites Vectors 6:332

  • Norberg J, Cumming GS (2008) Complexity theory for a sustainable future. Columbia University Press, New York

    Google Scholar 

  • Oatley TB, Prys-Jones RP (1986) A comparative analysis of movements of Southern African waterfowl (Anatidae) based on ringing recoveries. S Afr J Wildl Res 16:1–6

    Google Scholar 

  • Okanga S, Cumming GS, Hockey PA, Peters JL (2013) Landscape structure influences avian malaria ecology in the Western Cape, South Africa. Landscape Ecol 28(10):2019–2028

    Google Scholar 

  • Okes NC, Hockey PA, Cumming GS (2008) Habitat use and life history as predictors of bird responses to habitat change. Conserv Biol 22(1):151–162

    PubMed  Google Scholar 

  • Ostfeld RS, Glass GE, Keesing F (2005) Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol 20(6):328–336

    PubMed  Google Scholar 

  • Ostrom E (2009) A general framework for analyzing sustainability of social–ecological systems. Science 352:419–422

    Google Scholar 

  • Owen M, Black JM (1990) Waterfowl ecology. Chapman and Hall, New York

    Google Scholar 

  • Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, Wolfe ND, Kilpatrick AM, Foufopoulos J, Molyneux D, Bradley DJ, M. o. t. W. G. o. L. U. C. a. D. Emergence (2004) Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ Health Perspect 112(10):1092–1098

  • Paul MC, Gilbert M, Desvaux S, Andriamanivo HR, Peyre M, Nguyen Viet K, Thanapongtharm W, Chevalier V (2014) Agro-environmental determinants of avian influenza circulation: a multisite study in Thailand, Vietnam and Madagascar. PLoS ONE 9(7):e101958

  • Pavlovsky E (1966) Natural nidality of transmissible diseases with special reference to the landscape epidemiology of zooanthroponoses. University of Illinois Press, Urbana

    Google Scholar 

  • Pearce N, Merletti F (2006) Complexity, simplicity, and epidemiology. Int J Epidemiol 35(3):515–519

    PubMed  Google Scholar 

  • Perkins LE, Swayne DE (2002) Pathogenicity of a Hong Kong-origin H5N1 highly pathogenic avian influenza virus for emus, geese, ducks, and pigeons. Avian Dis 46(1):53–63

    PubMed  Google Scholar 

  • Perrings C, Castillo-Chavez C, Chowell G, Daszak P, Fenichel EP, Finnoff D, Horan RD, Kilpatrick AM, Kinzig AP, Kuminoff NV (2014) Merging economics and epidemiology to improve the prediction and management of infectious disease. EcoHealth. doi:10.1007/s10393-014-0963-6

  • Petrie SA, Rogers KH (1997a) Activity budget of breeding white-faced whistling ducks Dendrocygna viduata on stock-ponds in semi-arid South Africa, and a comparison with north-temperate waterfowl. S Afr J Wildl Res 27(3–4):79–85

    Google Scholar 

  • Petrie SA, Rogers KH (1997b) Ecology, nutrient reserve dynamics and movements of white-faced ducks in South Africa. Department of Environmental Affairs and Tourism, South Africa, Pretoria

    Google Scholar 

  • Pickett STA, Jones C, Kolasa J (2007) Ecological understanding: the nature of theory and the theory of nature. Academic, New York

    Google Scholar 

  • Pingali PL (2012) Green Revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci 109(31):12302–12308

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pittman M, Laddomada A (2007) Legislation for the control of Avian Influenza in the European Union. Zoonoses Public Health 55:29–36

    Google Scholar 

  • Plowright RK, Sokolow SH, Gorman ME, Daszak P, Foley JE (2008) Causal inference in disease ecology: investigating ecological drivers of disease emergence. Front Ecol Environ 6(8):420–429

    Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Google Scholar 

  • Polis GA, Power ME, Huxel GR (eds) (2004) Food webs at the landscape level. University of Chicago Press, Chicago

    Google Scholar 

  • Pretty J, Toulmin C, Williams S (2011) Sustainable intensification in African agriculture. Int J Agric Sustain 9(1):5–24

    Google Scholar 

  • RAHC (2013) Regional Animal Health Center (RAHC) for Southern Africa. RAHC. http://www.rr-africa.oie.int/en/RR/en_rahc_crsa_sa.html. Accessed 27 Feb 2015

  • Reisen WK (2010) Landscape epidemiology of vector-borne diseases. Annu Rev Entomol 55:461–483

    CAS  PubMed  Google Scholar 

  • Robinson SJ, Samuel MD, Rolley RE, Shelton P (2013) Using landscape epidemiological models to understand the distribution of chronic wasting disease in the Midwestern USA. Landscape Ecol 28(10):1923–1935

    Google Scholar 

  • Roche B, Lebarbenchon C, Gauthier-Clerc M, Chang CM, Thomas F, Renaud F, van der Werf S, Guegan JF (2009) Water-borne transmission drives avian influenza dynamics in wild birds: the case of the 2005–2006 epidemics in the Camargue area. Infect Genet Evol 9(5):800–805

  • Rohani P, Breban R, Stallknecht DE, Drake JM (2009) Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion. Proc Natl Acad Sci USA 106(25):10365–10369

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rushton J, Viscarra R, Guerne Bleich E, McLeod A (2005) Impact of avian influenza outbreaks in the poultry sectors of five South East Asian countries (Cambodia, Indonesia, Lao PDR, Thailand, Viet Nam) outbreak costs, responses and potential long term control. World's Poult Sci J 61:491–514

  • Seckler D, Amarasinghe U, Molden DJ, de Silva R, Barker R (1998) World water demand and supply, 1990 to 2025: scenarios and issues. In: Research Report 19. IWMI, Colombo

  • Si Y, Wang T, Skidmore A, De Boer W (2010) Environmental factors influencing the spread of the highly pathogenic avian influenza H5N1 virus in wild birds in Europe. Ecol Soc 15:26

    Google Scholar 

  • Slenning BD (2010) Global climate change and implications for disease emergence. Vet Pathol 47(1):28–33

    CAS  PubMed  Google Scholar 

  • Smith G, Dunipace M (2011) How backyard poultry flocks influence the effort required to curtail avian influenza epidemics in commercial poultry flocks. Epidemics 3:71–75

    PubMed Central  CAS  PubMed  Google Scholar 

  • Söderquist P, Gunnarsson G, Elmberg J (2013) Longevity and migration distance differ between wild and hand-reared mallards Anas platyrhynchos in Northern Europe. Eur J Wildl Res 59:159–166

  • Songserm T, Jam-on R, Sae-Heng N, Meemak N, Hulse-Post DJ, Sturm-Ramirez KM, Webster RG (2006) Domestic ducks and H5N1 influenza epidemic, Thailand. Emerg Infect Dis 12(4):575–581

  • Tamisier A, Grillas P (1994) A review of habitat changes in the Camargue: an assessment of the effects of the loss of biological diversity on the wintering waterfowl community. Biol Conserv 70:39–47

    Google Scholar 

  • Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, Paterson S, Begon M (2010) Species interactions in a parasite community drive infection risk in a wildlife population. Science 330:243

  • Thomas M, Bouma A, Ekker H, Fonken A, Stegeman J, Nielen M (2005) Risk factors for the introduction of high pathogenicity Avian Influenza virus into poultry farms during the epidemic in the Netherlands in 2003. Prev Vet Med 69(1):1–11

    CAS  PubMed  Google Scholar 

  • Tiensin T, Nielen M, Songserm T, Kalpravidh W, Chaitaweesub P, Amonsin A., Chotiprasatintara S, Chaisingh A, Damrongwatanapokin S, Wongkasemjit S, Antarasena C, Songkitti K, Chanachai K, Thanapongtham W, Stegeman A (2007) Geographic and temporal distribution of highly pathogenic avian influenza A Virus (H5N1) in Thailand, 2004–2005: an overview. Avian Dis 50:182–188

  • Tilman D, Fargione J, Wolff B, D'Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292(5515):281–284

  • Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourjeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO (2013) New World bats harbour diverse influenza A viruses. PLoS Pathog 9(10):e1003567

  • Tran PM, Waller L (2013) Effects of landscape fragmentation and climate on Lyme disease incidence in the northeastern United States. EcoHealth 10(4):394–404

    PubMed  Google Scholar 

  • Tyson PD (1986) Climatic change and variability in Southern Africa. Oxford University Press, Capetown

    Google Scholar 

  • Unwin MT (2011) The atlas of birds: diversity, behavior, and conservation. Princeton University Press, Princeton

    Google Scholar 

  • Van Dalen KK, Franklin AB, Mooers NL, Sullivan HJ, Shriner SA (2010) Shedding light on avian influenza H4N6 infection in mallards: modes of transmission and implications for surveillance. PLoS ONE 5(9):e12851

    Google Scholar 

  • van Dijk JGB, Hoye BJ, Verhagen JH, Nolet BA, Fouchier RAM, Klaassen M (2014) Juveniles and migrants as drivers for seasonal epizootics of avian influenza virus. J Anim Ecol 83:266–275

    PubMed  Google Scholar 

  • Vandegrift KJ, Sokolow SH, Daszak P, Kilpatrick AM (2010) Ecology of avian influenza viruses in a changing world. Ann NY Acad Sci 1195(1):113–128

    PubMed Central  PubMed  Google Scholar 

  • Vittecoq M, Thomas F, Jourdain E, Moutou F, Renaud F, Gauthier-Clerc M (2014) Risks of emerging infectious diseases: evolving threats in a changing area, the Mediterranean Basin. Transbound Emerg Dis 61(1):17–27

    CAS  PubMed  Google Scholar 

  • Viviroli D, Archer D, Buytaert W, Fowler H, Greenwood G, Hamlet A, Huang Y, Koboltschnig G, Litaor M, Lopez-Moreno J (2011) Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrol Earth Syst Sci 15(2):471–504

  • Walsh MG (2013) The relevance of forest fragmentation on the incidence of human babesiosis: investigating the landscape epidemiology of an emerging tick-borne disease. Vector-Borne Zoonotic Dis 13:250–255

  • Wardrop NA, Kuo C-C, Wang H-C, Clements ACA, Lee P-F, Atkinson PM (2013) Bayesian spatial modelling and the significance of agricultural land use to scrub typhus infection in Taiwan. Geospatial Health 8(1):229–239

    PubMed  Google Scholar 

  • Weber TP, Stilianakis NI (2008) Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J Infect 57(5):361–373

    PubMed  Google Scholar 

  • Webster RG (2004) Wet markets—a continuing source of severe acute respiratory syndrome and influenza? Lancet 363(9404):234–236

    PubMed  Google Scholar 

  • Wilcox BR, Knutsen GA, Berdeen J, Goekjian V, Poulson R, Goyal S, Sreevatsan S, Cardona C, Berghaus RD, Swayne DE, Yabsley MJ, Stallknecht DE (2011) Influenza-A viruses in ducks in northwestern Minnesota: fine scale spatial and temporal variation in prevalence and subtype diversity. PLoS ONE 6(9):e24010

  • Williams RAJ, Peterson AT (2009) Ecology and geography of avian influenza (HPAI H5N1) transmission in the Middle East and northeastern Africa. Int J Health Geogr 8:47

    PubMed Central  PubMed  Google Scholar 

  • Windhorst H-W (2007) Changing patterns of poultry production in the European Union. In: Commission of the European Communities (ed) Development of new integrated strategies for prevention, control and monitoring of epizootic poultry diseases. Commission of the European Communities

  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

  • Zinsstag J, Schelling E, Waltner-Toews D, Tanner M (2011) From “one medicine” to “one health” and systemic approaches to health and well-being. Prev Vet Med 101:148–156

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for funding support from a Protea Grant from the National Research Foundation of South Africa (NRF), the DST/NRF Centre of Excellence at the Percy FitzPatrick Institute, and the James S. McDonnell Foundation. This work was conducted within the framework of Cirad’s Research Platform “Production and Conservation in Partnership” and the AHEAD Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme S. Cumming.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cumming, G.S., Abolnik, C., Caron, A. et al. A social–ecological approach to landscape epidemiology: geographic variation and avian influenza. Landscape Ecol 30, 963–985 (2015). https://doi.org/10.1007/s10980-015-0182-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-015-0182-8

Keywords

Navigation