Skip to main content
Log in

Calorimetry and thermal analysis in food science

An updated review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Food science is a domain of life science. Applications of thermal analysis and calorimetry (TAC) to food products deal with many investigation targets spanning from the characterization of the systems at molecular and supramolecular level to the description of the microbial metabolism. Food products are multi-phase and multi-component metastable systems where several processes can occur simultaneously during the preparation process and the shelf life. One therefore has to disentangle various contributions to the overall instrumental outputs, using appropriate data treatments and kinetic models, and/or results from other experimental approaches. The paper reports an updated survey of TAC applications to food products through specific examples of data treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data from ref [28]

Fig. 5
Fig. 6
Fig. 7

Adapted from Ref. [14])

Scheme 2

[46]

Fig. 8
Fig. 9
Fig. 10

Adapted from ref [55]: fitting dotted lines for plate counts and pH according to the semiempirical model (see text below) and dose-logistic model, respectively

Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schiraldi A, Lilley TH, Braibanti A, Ollivon M, Cesaro A, Masi P. Calorimetry, thermal analysis and chemical thermodynamics in food science: Report on the panel discussion. Thermochim Acta. 1990;162:253–64.

    CAS  Google Scholar 

  2. Applications of calorimetry and thermal-analysis to food systems and processes. Thermochim Acta, 246 (1994) Special Issue, R11-R12, guest Ed. A. Schiraldi.

  3. Schiraldi A, Piazza L, Fessas D, Riva M, in Handbook of thermal analysis and calorimetry (1999) chap. 16, R. Kemp Ed., Elsevier Publ., Amsterdam, 829–921.

  4. Slade L, Levine H. Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Critical Rev Food Sci Nutr. 1991;30:115–360.

    CAS  Google Scholar 

  5. Tolstoguzov VB. Some thermodynamic considerations in food formulation. Food Hydrocolloids. 2003;17:1–23.

    CAS  Google Scholar 

  6. Bubbles in food, (1999), G.M. Campbell, C. Webb, S.S. Pandiella and K. Nirajan, Eds., Eagan Press Publ.

  7. Schiraldi A, Fessas D, Signorelli M. Water activity in biological systems-a review. Pol J Food Nutr Sci. 2012;62:5–13.

    CAS  Google Scholar 

  8. Zobel HF. Starch crystal transformations and their industrial importance. Starch. 1988;40:1–7.

    CAS  Google Scholar 

  9. Hills BP Water management in the design and distribution of quality foods”, (1999) Y.H. Roos, R.B. Leslie and P.J. Lillford Eds., Technomic Publ. Co., Lancaster, Penn., USA, 107-131.

  10. Beltonen PS. Mini review: on the elasticity of Wheat gluten. J Cereal Sci. 1999;29:103–7.

    Google Scholar 

  11. Schiraldi A, Piazza L, Riva M. Bread staling: a calorimetric approach. Cereal Chem. 1996;73:32–9.

    CAS  Google Scholar 

  12. Schiraldi A, Fessas D, Signorelli M, in “Calorimetry in food processing”, G. Kalentuc Ed., IFT Press series (2009), chap 11.

  13. Krokida MK, Karathanos VT, Maroulis ZB. Effect of freeze-drying conditions on shrinkage and porosity of dehydrated agricultural products. J Food Eng. 1998;35:369–80.

    Google Scholar 

  14. Lewicki PP. Design of hot air drying for better foods. Trends Food Sci Technol. 2006;17:153–63.

    CAS  Google Scholar 

  15. Pani P, Schiraldi A, Signorelli M, Fessas D. Thermodynamic approach to osmo-dehydration. Food Biophys. 2010;5:177–85.

    Google Scholar 

  16. Roos HY. Water activity and physical state effects on amorphous food stability. J Food Process Preserv. 1993;16:433–47.

    Google Scholar 

  17. Roos HY. Phase transitions in foods. San Diego: Acad. Press Inc.; 1995.

    Google Scholar 

  18. H. This, “Molecular Gastronomy: exploring the science of flavors” (2005), ISBN: 023114170X.

  19. Larsson H, Eliasson A-C. Phase separation of Wheat flour dough studied by ultracentrifugation and stress relaxation. II. Influence of mixing time, ascorbic acid, and lipids. Cereal Chem. 1996;73:18–31.

    CAS  Google Scholar 

  20. Fessas D, Signorelli M, Pagani A, Mariotti M, Iametti S, Schiraldi A. Guidelines for buckwheat enriched bread: thermal analysis approach. J Therm Anal Cal. 2008;91:9–16.

    CAS  Google Scholar 

  21. Tolstoguzov VB. Foods as dispersed systems. Thermodynamic aspects of composition-property relationships in formulated food. J Therm Anal Cal. 2000;61:397–409.

    CAS  Google Scholar 

  22. Piazza L, Masi P. Moisture redistribution throughout the bread loaf during staling and its effects on mechanical properties. Cereal Chem. 1995;72:320–5.

    CAS  Google Scholar 

  23. Mitchell JR, Fan JT, Blanshard JMV. Bubbles in food (1999), G.M. Campbell, C. Webb, S.S. Pandiella and K. Nirajan, Eds., Eagan Press Publ.

  24. Fessas D, Schiraldi A. Texture and staling of wheat bread crumb: effects of water extractable proteins andpentosans’. Thermochim Acta. 1998;323:17–26.

    CAS  Google Scholar 

  25. Fessas D, Schiraldi A. Starch Gelatinization Kinetics in Bread Dough. DSC investigations on’simulated’baking processes. J Therm Anal Cal. 2000;61:411–23.

    CAS  Google Scholar 

  26. Schiraldi A, Fessas D. Classical and Knudsen thermogravimetry to check states and displacements of water in food systems. J Therm Anal Cal. 2003;71:221–31.

    Google Scholar 

  27. Schiraldi A, Piazza L, Brenna O, Vittadini E. Structure and properties of bread dough and crumb. J Therm Anal. 1996;47:1339–60.

    CAS  Google Scholar 

  28. Fessas D, Schiraldi A. Water properties in wheat flour dough II: classical and Knudsen thermogravimetry approach. Food Chem. 2005;90:61–8.

    CAS  Google Scholar 

  29. Fessas D, Schiraldi A. Water properties in wheat flour dough I: classical thermogravimetry approach. Food Chem. 2001;72:237–44.

    CAS  Google Scholar 

  30. Piazza L, Schiraldi A. Correlation between fracture of semi‐sweet hard biscuits and dough viscoelastic properties. J Texture Stud. 1997;28:523–41.

    Google Scholar 

  31. Schiraldi A, Fessas D. Bread staling (2000), P. Chinachoti, Y. Vodovotz, Eds., CRC, Boca Raton, FL, 1–17.

  32. Riva M, Fessas D, Schiraldi A. Starch retrogradation in cooked pasta and rice. Cereal Chem. 2000;77:433–8.

    CAS  Google Scholar 

  33. Kou Y, Ross EW, Taub LA. Amorphous food and pharmaceutical systems, (2002) H. Levine Ed., The Royal Society of Chemistry, Cambridge, 48–58.

  34. Hall L-D, Amin MHH, Evans S, Nott KP, Sun L. Water science for food, health, agriculture and environment, Z. Berk, R.B. Leslie, P.J. Lillford and S. Mizrahi Eds., Technomic Publ., Lancaster, Penn., USA, 255–271.

  35. Schiraldi A. Starch and starch containing products: origins - structure, properties and new technologies”, V. Yuryev, A. Cesaro and W. Bergthaller Eds., Nova Science Publishers, (2002) chap 20, 287–296.

  36. Vodovotz Y, Vittadini E, Sachleben JR. Use of 1H cross-relaxation nuclear magnetic resonance spectroscopy to probe the changes in bread and its components during aging. Carbohydr Res. 2002;337:147–53.

    PubMed  CAS  Google Scholar 

  37. Schiraldi A, Fessas D, Signorelli M, data presented at ESTAC 9, Kracow, August 27–31, 2006.

  38. Yuryev VP, Krivandin AV, Kiseleva VI, Wasserman LA, Genkina NK, Fornal J, Błaszczak W, Schiraldi A. Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. Carbohydr Res. 2004;339:2683–91.

    PubMed  CAS  Google Scholar 

  39. Lii CY, Lee BL. Heating A-, B-, and C-type starches in aqueous sodium chloride: effects of sodium chloride concentration and moisture content on differential scanning calorimetry thermograms. Cereal Chem. 1993;70:188–92.

    CAS  Google Scholar 

  40. Hedayati S, Shahidi F, Koocheki A, Farahnaky A, Majzoobi M. Physical properties of pregelatinized and granular cold water swelling maize starches at different pH values. Int J Biol Mol. 2016;88:499–504.

    CAS  Google Scholar 

  41. Wille RL, Lutton ES. Polymorphism of cocoa butter. J Am Oil Chem Soc. 1966;43:491–6.

    PubMed  CAS  Google Scholar 

  42. Fessas D, Signorelli M, Schiraldi A. Polymorphous transitions in cocoa butter: a quantitative DSC study. J Therm Anal Cal. 2005;82:691–702.

    CAS  Google Scholar 

  43. Aguilera JM, Michel M, Mayor G. Fat migration in chocolate: diffusion or capillary flow in a particulate solid?—a hypothesis paper. J Food Sci. 2004;69:167–74.

    Google Scholar 

  44. Narine SS, Marangoni AG. Relating structure of fat crystal networks to mechanical properties: a review. Food Res Int. 1999;32:227.

    CAS  Google Scholar 

  45. Tolstoguzov VB. Texturising by phase separation. Biotechnol Adv. 2006;24:626–8.

    PubMed  CAS  Google Scholar 

  46. Kamrul HSM, Schiraldi A, Cosio MS, Scampicchio M. Food and ascorbic scavengers of hydrogen peroxide. J Therm Anal Cal. 2016;125:729–37.

    CAS  Google Scholar 

  47. Haman N, Ferrentino G, Imperiale S, Scampicchio M. Antioxidant and prooxidant activity of spent coffee extracts by isothermal calorimetry. J Therm Anal Cal. 2018;132:1065–75.

    CAS  Google Scholar 

  48. Haman N, Longo E, Schiraldi A, Scampicchio M. Radical scavenging activity of lipophilic antioxidants and extra-virgin olive oil by isothermal calorimetry. Thermochim Acta. 2017;658:1–6.

    CAS  Google Scholar 

  49. Haman N, Romano A, Asaduzzaman M, Ferrentino G, Biasioli F, Scampicchio M. A microcalorimetry study on the oxidation of linoleic acid and the control of rancidity. Talanta. 2017;164:407–12.

    PubMed  CAS  Google Scholar 

  50. Labuza TP, McNally L, Gallagher D, Hawkes J, Hurtado F. Stability of intermediate moisture foods. 1. Lipid oxidation. J Food Sci. 1972;37:154–9.

    CAS  Google Scholar 

  51. Rahman MS, Labuza TP. Water activity and food preservation, Handbook of Food Preservation, 2nd ed. (2007) M.S. Rahman, Ed., CRC Press, Boca Raton, Florida, USA, 447-476.

  52. Schiraldi A. The nature of biological systems as revealed thermal methods“(2004) chap.2, D. Lorinczy Ed., Kluwer Academy Publ., 31.

  53. Schiraldi A. Microbial growth and metabolism: modelling and calorimetric characterization. Pure Appl Chem. 1995;67:1873–8.

    CAS  Google Scholar 

  54. Fessas D, Schiraldi A. Isothermal calorimetry and microbial growth: beyond modeling. J Therm Anal Calorim. 2017;130:567–72.

    CAS  Google Scholar 

  55. Riva M, Fessas D, Franzetti L, Schiraldi A. Calorimetric characterization of different yeast strains in doughs. J Therm Anal Calorim. 1998;52:753–64.

    CAS  Google Scholar 

  56. Gardikis K, Signorelli M, Ferrario C, Schiraldi A, Fortina MG, Hatziantoniou S, Demetzos C, Fessas D. Microbial biosensors to monitor the encapsulation effectiveness of Doxorubicin in chimeric advanced drug delivery nano systems: a calorimetric approach. Int J Pharm. 2017;516:178–84.

    PubMed  CAS  Google Scholar 

  57. Baranyi J, Pin C, Ross T. Validating and comparing predictive models. Int J Food Microbiol. 1999;48:159–66.

    PubMed  CAS  Google Scholar 

  58. Buchanan RL, Whiting RC, Damert WC. When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol. 1997;14:313–26.

    Google Scholar 

  59. Peleg M. Advanced quantitative microbiology for food and biosystems: models for predicting growth and inactivation. Boca Raton: CRC Press; 2006.

    Google Scholar 

  60. Peleg M. Microbial survival curves: interpretation, mathematical modeling and utilization. Comments Theor Biol. 2003;8(2003):357–87.

    Google Scholar 

  61. Schiraldi A. Microbial growth in planktonic conditions. Cell Dev Biol 6 (2017) 185, https://doi.org/10.4172/2168-9296.1000185, and related appendix.

  62. Schiraldi A. A self-consistent approach to the lag phase of planktonic microbial cultures. Single Cell Biol. 2017;6:166. https://doi.org/10.4172/2168-9431.1000166.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Schiraldi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiraldi, A., Fessas, D. Calorimetry and thermal analysis in food science. J Therm Anal Calorim 138, 2721–2732 (2019). https://doi.org/10.1007/s10973-019-08166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08166-z

Keywords

Navigation