Skip to main content
Log in

Synthesis, structure and thermal investigation of a new volatile iridium (I) complex with cyclooctadiene and methoxy-substituted β-diketonate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The presence of donor groups in volatile metal compounds is interesting both in the thermochemical aspect and as the possibility to form hetero-metallic precursors by a reaction with an acceptor-capable component. Following this trend, the present work deals with synthesis and detailed structural and thermochemical investigation of a first iridium volatile complex with donor-atom-functionalized β-diketonate ligand, namely [Ir(cod)(zis)] (cod = cyclooctadiene-1,5, zis = 2-methoxy-2,6,6-trimethylheptanedionato-3,5). The compound has been characterized by elemental analysis, IR- and NMR-spectroscopy. According to single-crystal X-ray diffraction, the crystal structure of the complex is formed by layered-packed isolated molecules. Within the molecules, the coordination site IrO2C′2 (C′ is the center of C=C bond of the cod-ligand) is implemented to form distorted planar square metal coordination environment with Ir–O and Ir–C′ distances being (2.034–2.046) and (1.965–1.978) Å, respectively. TG–DTA study shows that the compound is characterized by extremely low melting point (378 K) and a high thermal stability during evaporation. Then, the temperature dependencies of saturated vapor pressures over both the solid and liquid compounds have been measured by the flow (transpiration) method at (353–376) K and (381–403) K, respectively, giving the molar enthalpy and entropy of sublimation and evaporation processes. In addition, the comparison of the structural and thermal data with the ones for the related [Ir(cod)(L)] complexes containing symmetric alkyl terminal substituents in β-diketonate ligand L has been performed and, thereby, the donor group influence on the characteristics of this type of volatile compounds has been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tiitta M, Niinistou L. Volatile metal β-Diketonates: ALE and CVD precursors for electroluminescent device thin films. Chem Vap Depos. 1997;3:167–82.

    Article  CAS  Google Scholar 

  2. Igumenov IK, Basova TV, Belosludov VR. Volatile precursors for films deposition: vapor pressure, structure and thermodynamics. In: Mizutani T, editor. Application of thermodynamics to biological and materials science. Rijeka: InTech; 2011. p. 521–46.

    Google Scholar 

  3. Fahlman BD, Barron AR. Substituent effects on the volatility of metal β-diketonates. Adv Mater Opt Electr. 2000;10:223–32.

    Article  CAS  Google Scholar 

  4. Johnson RW, Hultqvist A, Bent SF. A brief review of atomic layer deposition: from fundamentals to applications. Mater Today. 2014;17:236–46.

    Article  CAS  Google Scholar 

  5. Mishra S, Daniele S. Metal–organic derivatives with fluorinated ligands as precursors for inorganic nanomaterials. Chem Rev. 2015;115:8379–448.

    Article  CAS  PubMed  Google Scholar 

  6. Fang G, Xu L, Cao Y, Li A. Theoretical design and computational screening of precursors for atomic layer deposition. Coord Chem Rev. 2016;322:94–103.

    Article  CAS  Google Scholar 

  7. Krisyuk VV, Shubin YV, Senocq F, Turgambaeva AE, Duguet T, Igumenov IK, Vahlas C. Chemical vapor deposition of Pd/Cu alloy films from a new single source precursor. J Cryst Growth. 2015;414:130–4.

    Article  CAS  Google Scholar 

  8. Krisyuk VV, Tkachev SV, Baidina IA, Korolkov IV, Turgambaeva AE, Igumenov IK. Volatile Pd–Pb and Cu–Pb heterometallic complexes: structure, properties, and trans-to-cis isomerization under cocrystallization of Pd and Cu β-diketonates with Pb hexafluoroacetylacetonate. J Coord Chem. 2015;68:1890–902.

    Article  CAS  Google Scholar 

  9. Krisyuk VV, Baidina IA, Turgambaeva AE, Nadolinny VA, Kozlova SG, Korolkov IV, Duguet T, Vahlas C, Igumenov IK. Volatile heterobimetallic complexes from PdII and CuII β-diketonates: structure, magnetic anisotropy, and thermal properties related to the chemical vapor deposition of Cu–Pd thin films. ChemPlusChem. 2015;80:1457–64.

    Article  CAS  Google Scholar 

  10. Krisyuk VV, Sysoev SV, Turgambaeva AE, Nazarova AA, Koretskaya TP, Igumenov IK, Morozova NB. Thermal behavior of methoxy-substituted Pd and Cu β-diketonates and their heterobimetallic complex. J Therm Anal Calorim. 2017;130:1105–10.

    Article  CAS  Google Scholar 

  11. Krisyuk VV, Baidina IA, Kryuchkova NA, Logvinenko VA, Plyusnin PE, Korolkov IV, Zharkova GI, Turgambaeva AE, Igumenov IK. Volatile heterometallics: structural diversity of Pd–Pb β-diketonates and correlation with thermal properties. Dalton Trans. 2017;46:12245–56.

    Article  CAS  PubMed  Google Scholar 

  12. Krisyuk VV, Baidina IA, Romanenko GV, Korolkov IV, Koretskaya TP, Petrova NI, Turgambaeva AE. Structure and thermal properties of heterometallic complexes for chemical vapor deposition of Cu–Pd films. J Struct Chem. 2017;58:1522–9.

    Article  CAS  Google Scholar 

  13. Baidina IA, Gromilov SA, Zharkova GI. Crystal and molecular structures of cis-bis-(1,1,1-trifluoro-5-methoxy-5-methyl-2,4-hexanedionato)palladium (II) and -platinum (II). J Struct Chem. 1999;40:633–9.

    Article  CAS  Google Scholar 

  14. Vasilyev VY, Morozova NB, Basova TV, Igumenov IK, Hassan A. Chemical vapour deposition of Ir-based coatings: chemistry, processes and applications. RSC Adv. 2015;5:32034–63.

    Article  CAS  Google Scholar 

  15. Igumenov IK, Semyannikov PP, Belaya SV, Zanina AS, Shergina SI, Sokolov IE. New volatile β-diketonate complexes of barium with sterically hindered methoxy-β-diketones as precursors for CVD. Polyhedron. 1996;15:4521–30.

    Article  CAS  Google Scholar 

  16. Fulmer GR, Miller AJ, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics. 2010;29:2176–9.

    Article  CAS  Google Scholar 

  17. Vikulova ES, Ilyin IY, Karakovskaya KI, Piryazev DA, Turgambaeva AE, Morozova NB. Volatile iridium (I) complexes with β-diketones and cyclooctadiene: syntheses, structures and thermal properties. J Coord Chem. 2016;69:2281–90.

    Article  CAS  Google Scholar 

  18. Bespyatov MA, Kuzin TM, Naumov VN, Vikulova ES, Ilyin IY, Morozova NB, Gelfond NV. Low-temperature heat capacity of Ir(C5H7O2)(C8H12). J Chem Therm. 2016;99:70–4.

    Article  CAS  Google Scholar 

  19. Bruker, APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, 2004

  20. Sheldrick GM. A short history of SHELX. Acta Cryst A. 2008;64:112–22.

    Article  CAS  Google Scholar 

  21. Vikulova ES, Cherkasov SA, Nikolaeva NS, Smolentsev AI, Sysoev SV, Morozova NB. Thermal behavior of volatile palladium(II) complexes with tetradentate Schiff bases containing propylene-diimine bridge. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7371-z.

    Article  Google Scholar 

  22. Zherikova KV, Zelenina LN, Pishchur DP, Emel’yanenko VN, Shoifet E, Schick C, Verevkin SP, Gelfond NV, Morozova NB. Thermochemical study of rhodium (III) acetylacetonate. J Chem Therm. 2016;102:442–50.

    Article  CAS  Google Scholar 

  23. Volkova TV, Blokhina SV, Ryzhakov AM, Sharapova AV, Ol’khovich MV, Perlovich GL. Vapor pressure and sublimation thermodynamics of aminobenzoic acid, nicotinic acid, and related amido-derivatives. J Therm Anal Calorim. 2016;123:841–9.

    Article  CAS  Google Scholar 

  24. Gerfin T, Hälg WJ, Atamny F, Dahmen KH. Growth of iridium films by metal organic chemical vapour deposition. Thin Solid Films. 1994;241:352–5.

    Article  CAS  Google Scholar 

  25. Xu C, Baum TH, Rheingold AL. New precursors for chemical vapor deposition of iridium. Chem Mater. 1998;10:2329–31.

    Article  CAS  Google Scholar 

  26. Krisyuk VV, Baidina IA, Turgambaeva AE, Korolkov IV, Koretskaya TP, Igumenov IK. Structure and thermal properties of Pb(II) complex with functionalized β-diketonate. J Organomet Chem. 2016;819:115–9.

    Article  CAS  Google Scholar 

  27. Krasnov PO, Mikhaleva NS, Kuzubov AA, Nikolaeva NS, Zharkova GI, Sheludyakova LA, Morozova NB, Basova TV. Prediction of the relative probability and the kinetic parameters of bonds breakage in the molecules of palladium MOCVD precursors. J Mol Struct. 2017;1139:269–74.

    Article  CAS  Google Scholar 

  28. Tucker PA. Acetylacetonato(1,5-cyclooctadiene)iridium (I). Acta Cryst B. 1981;37:1113–5.

    Article  Google Scholar 

  29. Zharkova GI, Stabnikov PA, Sysoev SA, Igumenov IK. Volatility and crystal lattice energy of palladium(II) chelates. J Struct Chem. 2005;46:320–7.

    Article  CAS  Google Scholar 

  30. Nandurkar NS, Bhanushali MJ, Bhor MD, Bhanage BM. Palladium bis(2,2,6,6-tetramethyl-3,5-heptanedionate): an efficient catalyst for regioselective C-2 arylation of heterocycles. Tetrahedron Lett. 2008;49:1045–8.

    Article  CAS  Google Scholar 

  31. Utriainen M, Kröger-Laukkanen M, Johansson LS, Niinistö L. Studies of metallic thin film growth in an atomic layer epitaxy reactor using M(acac)2 (M = Ni, Cu, Pt) precursors. Appl Surf Sci. 2000;157:151–8.

    Article  CAS  Google Scholar 

  32. Purecha VH, Nandurkar NS, Bhanage BM, Nagarkar JM. Copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate) catalyzed synthesis of N-substituted ferrocenes. Tetrahedron Lett. 2008;49:1384–7.

    Article  CAS  Google Scholar 

  33. Temple D, Reisman A. Chemical vapor deposition of copper from copper(II) hexafluoroacetylacetonate. J Electrochem Soc. 1989;136:3525–9.

    Article  CAS  Google Scholar 

  34. Colominas C, Lau KH, Hildenbrand DL, Crouch-Baker S, Sanjurjo A. Vapor pressures of the copper and yttrium β-diketonate MOCVD precursors. J Chem Eng Data. 2001;46:446–50.

    Article  CAS  Google Scholar 

  35. Zharkova GI, Stabnikov PA, Grankin VM, Semyannikov PP, Igumenov IK. Palladium (II) β-diketonates: volatility and energy of the crystal lattice. Russ J Coord Chem. 2000;26:576–81.

    CAS  Google Scholar 

  36. Morozova NB, Semyannikov PP, Trubin SV, Stabnikov PP, Bessonov AA, Zherikova KV, Igumenov IK. Vapor pressure of some volatile iridium(I) compounds with carbonyl, acetylacetonate and cyclopentadienyl ligands. J Therm Anal Calorim. 2009;96:261–6.

    Article  CAS  Google Scholar 

  37. Vikulova ES, Karakovskaya KI, Ilyin IYu., Zelenina LN, Sysoev SV, Morozova NB. Thermodynamic study of volatile iridium (I) complexes with 1,5-cyclooctadiene and acetylacetonato derivatives: effect of (O,O) and (O,N) coordination sites. J Chem Therm. 2019 (In press).

Download references

Funding

The reported study was funded by RFBR and “NID” Foundation according to the research project No. 17-33-80100_mol_ev_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniia S. Vikulova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakovskaya, K.I., Vikulova, E.S., Ilyin, I.Y. et al. Synthesis, structure and thermal investigation of a new volatile iridium (I) complex with cyclooctadiene and methoxy-substituted β-diketonate. J Therm Anal Calorim 137, 931–940 (2019). https://doi.org/10.1007/s10973-018-07994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-07994-9

Keywords

Navigation