Skip to main content
Log in

Thermodynamic investigation of Rb2FeTi(PO4)3 phosphate of langbeinite structure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The temperature dependence of molar heat capacity for Rb2FeTi(PO4)3 phosphate was investigated between T = 6 and 650 K by precision adiabatic vacuum and differential scanning calorimetry in this research. The anomaly was observed in the heat capacity curve, and its character was explained by magnetic disorder–order phase transition at T below 6 K. The standard thermodynamic functions \( C_{{{\text{p}},{\text{m}}}}^{\text{o}} ,\;\left[ {H_{\text{m}}^{\text{o}} (T) - H_{\text{m}}^{\text{o}} (6)} \right],\;\left[ {S_{\text{m}}^{\text{o}} (T) - S_{\text{m}}^{\text{o}} (6)} \right],\;\varPhi_{\text{m}}^{\text{o}} \) of Rb2FeTi(PO4)3 within the range T → 6–650 K were calculated. The low-temperature heat capacity analysis, performed based on the Debye theory and multifractal model, leads to the conclusion of framework structural topology of the studied phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zemann A, Zemann J. Die Kristallstruktur von Langbeinit K2Mg2(SO4)3. Acta Cryst. 1957;10:409–13.

    Article  CAS  Google Scholar 

  2. Dilanian RA, Izumi F, Kamiyama T, Itoh K. Neutron diffraction study of the phase transition in K2Mn2(SO4)3. J Phys Chem Solids. 1999;60:1423–6.

    Article  CAS  Google Scholar 

  3. Hidalgo-Lopez A, Veintemillas-Verdaguer S. Growth of K2Mg2(SO4)3 and K2Mn2(SO4)3 from solution by solvent evaporation and diffusion-reaction methods. J Crystal Growth. 1997;178:559–67.

    Article  CAS  Google Scholar 

  4. Zaripov AR, Orlova VA, Pet’kov VI, Slyunchev OM, Galuzin DD, Rovnyi SI. Synthesis and study of the phosphate Cs2Mn0.5Zr1.5(PO4)3. Russ J Inorg Chem. 2009;54:45–51.

    Article  Google Scholar 

  5. Kumar SP, Gopal B. New rare earth langbeinite phosphosilicates KBaREEZrP2SiO12 (REE: La, Nd, Sm, Eu, Gd, Dy) for lanthanide comprising nuclear waste storage. J Alloys Compd. 2016;. doi:10.1016/j.jallcom.2015.10.088.

    Google Scholar 

  6. Zolotova ES, Solodovnikova ZA, Ayupov BM, Solodovnikov SF. Phase formation in the Li2MoO4–A2MoO4–NiMoO4 (A = K, Rb, Cs) systems, the crystal structure of Cs2Ni2(MoO4)3, and color characteristics of alkali-metal nickel molybdates. Russ J Inorg Chem. 2011;56:1216–21.

    Article  CAS  Google Scholar 

  7. Zhang Z-J, Lin X, Zhao J-T, Zhang G-B. Preparation and spectroscopic properties of rare-earth (RE) (RE = Sm, Eu, Tb, Dy, Tm)-activated K2LnZr(PO4)3 (Ln = Y, La, Gd and Lu) phosphate in vacuum ultraviolet region. Mater Res Bull. 2013;48:224–31.

    Article  CAS  Google Scholar 

  8. García-Glez J, Alfonso BF, Huidobro JA, Khainakov SA, Castro GR, Trobajo C. Thermal synthesis and structural characterization of the orthorhombic Th2(PO4)(P3O10). J Therm Anal Calorim. 2014;118:759–65.

    Article  Google Scholar 

  9. Szumera M, Wacławska I, Sułowska J. Thermal properties of MnO2 and SiO2 containing phosphate glasses. J Therm Anal Calorim. 2016;123:1083–9.

    Article  CAS  Google Scholar 

  10. Holubová J, Černošek Z, Černošková E, Beneš L. Thermal properties and structure of zinc–manganese metaphosphate glasses. J Therm Anal Calorim. 2015;122:47–53.

    Article  Google Scholar 

  11. Ciecińska M, Stoch P, Stoch A, Nocuń M. Thermal properties of 60P2O5–20Fe2O3–20Al2O3 glass for salt waste immobilization. J Therm Anal Calorim. 2015;121:1225–32.

    Article  Google Scholar 

  12. Stoch P, Ciecinska M, Stoch A. Thermal properties of phosphate glasses for salt waste immobilization. J Therm Anal Calorim. 2014;117:197–204.

    Article  CAS  Google Scholar 

  13. Pet’kov VI, Shipilov AS, Markin AV, Smirnova NN. Thermodynamic properties of crystalline magnesium zirconium phosphate. J Therm Anal Calorim. 2014;115:1453–63.

    Article  Google Scholar 

  14. Sukhanov MV, Schelokov IA, Pet’kov VI, Gobechiya ER, Kabalov YK, Markin AV, Smirnova NN. Synthesis, structure and thermophysical properties of phosphates MNi0.5Zr1.5(PO4)3 (M = Mg, Ca, Sr). Eur Chem Technol J. 2010;12:241–5.

    Article  CAS  Google Scholar 

  15. Pet’kov VI, Shchelokov IA, Markin AV, Smirnova NN, Sukhanov MV. Thermodynamic properties of crystalline phosphate Ba0.5Zr2(PO4)3 over the temperature range from T  0 to 610 K. J Therm Anal Calorim. 2010;102:1147–54.

    Article  Google Scholar 

  16. Pet’kov VI, Asabina EA, Markin AV, Smirnova NN. Heat capacity and standard thermodynamic functions of NaTi2(PO4)3 and NaHf2(PO4)3. J Chem Eng Data. 2010;55:856–63.

    Article  Google Scholar 

  17. Pet’kov VI, Asabina EA, Markin AV, Smirnova NN. Synthesis, characterization and thermodynamic data of compounds with NZP structure. J Therm Anal Calorim. 2008;91(1):155–61.

    Article  Google Scholar 

  18. Chemical reagents and high-pure chemicals. Catalog, Khimia, Moscow; 1990 (in Russian).

  19. Asabina EA, Pet’kov VI, Gobechiya ER, Kabalov YK, Pokholok KV, Kurazhkovskaya VS. Synthesis and crystal structure of phosphates A2FeTi(PO4)3 (A = Na, Rb). Russ J Inorg Chem. 2008;53:40–7.

    Article  Google Scholar 

  20. Zatovskii IV, Slobodyanik NS, Ushchapivskaya TI, Ogorodnik IV, Babarik AA. Synthesis of complex phosphates with a langbeinite structure from melts. Russ J Appl Chem. 2006;79:10–5.

    Article  CAS  Google Scholar 

  21. Ogorodnyk IV, Zatovsky IV, Slobodyanik NS, Baumer VN, Shishkin OV. Synthesis, structure and magnetic properties of new phosphates K2Mn0.5Ti1.5(PO4)3 and K2Co0.5Ti1.5(PO4)3 with the langbeinite structure. J Solid State Chem. 2006;179:3461–6.

    Article  CAS  Google Scholar 

  22. Blokhin AV, Paulechka YU, Kabo GJ. Thermodynamic properties of [C6mim][NTf2] in the condensed state. J Chem Eng Data. 2006;51:1377–88.

    Article  CAS  Google Scholar 

  23. Varushchenko RM, Druzhinina AI, Sorkin EL. Low-temperature heat capacity of l-bromoperfluorooctane. J Chem Thermodyn. 1997;29:623–37.

    Article  CAS  Google Scholar 

  24. Hohne GWH, Hemminger WF, Flammersheim HF. Differential scanning calorimetry. Berlin: Springer; 2003.

    Book  Google Scholar 

  25. Drebushchak VA. Calibration coefficient of heat-flow DSC. Part II. Optimal calibration procedure. J Therm Anal Calorim. 2005;79:213–8.

    Article  CAS  Google Scholar 

  26. Markin AV, Sankovich AM, Smirnova NN, Zvereva IA. Heat capacity and standard thermodynamic functions of NaGdTiO4 and Na2Gd2Ti3O10 over the range from 6 to 630 K. J Chem Eng Data. 2015;. doi:10.1021/acs.jced.5b00047.

    Google Scholar 

  27. Westrum EF. Lattice and Schottky contributions to the morphology of lanthanide heat capacities. J Chem Thermodyn. 1983;15:305–25.

    Article  CAS  Google Scholar 

  28. Cracknell AP, Tooke AO. The specific heats of magnetically ordered materials. Contemp Phys. 1979;20:55–82.

    Article  CAS  Google Scholar 

  29. Izotov AD, Shebershnyova OV, Gavrichev KS. Third All-Union conference on thermal analysis and calorimetry, Kazan; 1996.

  30. Lazarev VB, Izotov AD, Gavrichev KS, Shebershneva OV. Fractal model of heat capacity for substances with diamond-like structures. Thermochim Acta. 1995;269(270):109–16.

    Article  Google Scholar 

  31. Lebedev BV. Application of precise calorimetry in study of polymers and polymerization processes. Thermochim Acta. 1997;297:143–9.

    Article  CAS  Google Scholar 

  32. McCullough JP, Scott DW. Calorimetry of non-reacting systems. London: Butterworth; 1968.

    Google Scholar 

Download references

Acknowledgements

The present work was performed at the Lobachevsky State University of Nizhni Novgorod with the financial support of the Russian Foundation for Basic Research (Project No. 15-03-00716) based on equipment of Common Use Center «New materials and resource-recovery technologies» (Agreement N 14.594.21.0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Asabina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pet’kov, V.I., Asabina, E.A., Markin, A.V. et al. Thermodynamic investigation of Rb2FeTi(PO4)3 phosphate of langbeinite structure. J Therm Anal Calorim 124, 1535–1544 (2016). https://doi.org/10.1007/s10973-016-5319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5319-8

Keywords

Navigation