Skip to main content
Log in

Kinetics investigation on the combustion of waste capsicum stalks in Western China using thermogravimetric analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The combustion kinetics of waste capsicum stalk (WCS) in Western China is investigated through thermogravimetric analysis compared with sawdust and coal, and co-combustion of WCS with coal is also investigated. Results show that the ignition characteristics of WCS is better than that of sawdust and coal, and the activation energy E of WCS-volatile combustion and WCS-char combustion are 78.55 kJ mol−1 and 44.59 kJ mol−1. However, integrating the characteristics of ignition and burnout, the combustion characteristic factor (S N) of WCS is lower than that of sawdust. With the increasing in the heating rate, the ignition of WCS is delayed. Oxygen concentration \( C_{{{\text{O}}_{2} }} \) affects E and k 0 of volatile combustion largely under rich-oxygen condition, when \( C_{{{\text{O}}_{2} }} \) increases from 0.2 to 0.8, E has increased threefold and k 0 also intensively increases from 106 to 1013–1022. Oppositely, effect of \( C_{{{\text{O}}_{2} }} \) on the E and k 0 of char combustion is little, and there is an exponential relationship \( S_{\text{N}} = 7. 1 2 8 \times 10^{ - 9} \times { \exp }(C_{{{\text{O}}_{2} }} /0. 3 6 8) - 6. 1 2 6 \times 10^{ - 9} \) between S N and \( C_{{{\text{O}}_{2} }} \). For the tests of co-combustion, all the experimental and weighted-average curves coincide well, and there is no remarkable synergistic effect. With the increase of mixing ratio that WCS added, E and k 0 of volatile combustion increase, but correspondingly E and k 0 of char combustion decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang XB, et al. Nitrogen, sulfur, and chlorine transformations during the pyrolysis of straw. Energy Fuels. 2010;24:5215–21.

    Article  CAS  Google Scholar 

  2. Dumanli AG, Tas S, Yurum Y. Co-firing of biomass with coals Part 1. Thermogravimetric kinetic analysis of combustion of fir (Abies bornmulleriana) wood. J Therm Anal Calorim. 2011;103(3):925–33.

    Article  CAS  Google Scholar 

  3. Wang X-B, Zhao Q-X, Tan H-Z. Kinetic analysis of nitric oxide reduction using biogas as reburning fuel. Afr J Biotechnol. 2009;8(10):2251–7.

    CAS  Google Scholar 

  4. Gonzalez-Diaz L, et al. Expert system for integrated plant protection in pepper (Capsicum annuun L.). Exp Syst Appl. 2009;36:8975–9.

    Article  Google Scholar 

  5. Kulkarni M, Phalke S. Evaluating variability of root size system and its constitutive traits in hot pepper (Capsicum annum L.) under water stress. Sci Hortic. 2009;120:159–66.

    Article  Google Scholar 

  6. Yongxia H, Baoli Z, Xiaoling W. Allelopathy of decomposing pepper stalk on pepper growth. Chin J Appl Ecol. 2006;17(4):699–702.

    Google Scholar 

  7. Wang X, et al. Experimental investigation on biomass co-firing in a 300 MW pulverized coal-fired utility furnace in China. Proc Combust Inst. 2011;33(2):2725–33.

    Article  CAS  Google Scholar 

  8. Ulloa CA, Gordon AL, García XA. Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust. Fuel Process Technol. 2009;90:583–90.

    Article  CAS  Google Scholar 

  9. Wei X, Lopez C, Puttkamer Tv. Assessment of chlorine-alkali-mineral interactions during co-combustion of coal and straw. Energy Fuels. 2002;16:1095–108.

    Article  CAS  Google Scholar 

  10. Tan HZ, et al. Influence of metal elements on the evolution of CO and CH4 during the pyrolysis of sawdust. Afr J Biotechnol. 2010;9(3):331–9.

    CAS  Google Scholar 

  11. Morgana PA, Robertsona SD, Unswortha JF. Combustion studies by thermogravimetric analysis: 1. Coal Oxid Fuel. 1986;65(11):1546–51.

    Google Scholar 

  12. Zhao Y, Hu H, Jin L. Pyrolysis behavior of weakly reductive coals from northwest China. Energy Fuels. 2009;23:870–5.

    Article  CAS  Google Scholar 

  13. Ghetti P, Robertis UD, D’Antone S. Coal combustion: correlation between surface area and thermogravimetric analysis data. Fuel. 1985;64(7):950–5.

    Article  CAS  Google Scholar 

  14. Suarez A, et al. Thermal analysis of the combustion of charcoals from Eucalyptus dunnii obtained at different pyrolysis temperatures. J Therm Anal Calorim. 2010;100(3):1051–4.

    Article  Google Scholar 

  15. Niu SL, et al. Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere. J Therm Anal Calorim. 2009;98(1):267–74.

    Article  CAS  Google Scholar 

  16. Ren Y, Freitag NP, Mahinpey N. A simple kinetic model for coke combustion during an in situ combustion (ISC) process. J Can Petrol Technol. 2007;46(4):47–53.

    CAS  Google Scholar 

  17. Ambalae A, Mahinpey N, Freitag N. Thermogravimetric studies on pyrolysis and combustion behavior of a heavy oil and its asphaltenes. Energy Fuels. 2006;20(2):560–5.

    Article  CAS  Google Scholar 

  18. Zouaoui N, et al. Study of experimental and theoretical procedures when using thermogravimetric analysis to determine kinetic parameters of carbon black oxidation. J Therm Anal Calorim. 2010;102(3):837–49.

    Article  CAS  Google Scholar 

  19. Kalogirou M, Samaras Z. Soot oxidation kinetics from TG experiments. J Therm Anal Calorim. 2010;99(3):1005–10.

    Article  CAS  Google Scholar 

  20. Sancheza ME, et al. Thermogravimetric kinetic analysis of the combustion of biowastes. Renew Energy. 2009;34(6):1622–7.

    Article  Google Scholar 

  21. Li X, Ma B, Xua L. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim Acta. 2006;441(4):79–83.

    Article  CAS  Google Scholar 

  22. García AN, Font R, Esperanza MM. Thermogravimetric kinetic model of the combustion of a varnish waste based on polyurethane. Energy Fuels. 2001;15(4):848–55.

    Article  Google Scholar 

  23. Zhaosheng Y, Xiaoqian M, Ao L. Thermogravimetric analysis of rice and wheat straw catalytic combustion in air- and oxygen-enriched atmospheres. Energy Convers Manag. 2009;50:561–6.

    Article  Google Scholar 

  24. Zapata B, et al. Thermo-kinetics study of orange peel in air. J Therm Anal Calorim. 2009;98(1):309–15.

    Article  CAS  Google Scholar 

  25. Yagmur S, Durusoy T. Kinetics of combustion of oil shale with polystyrene. J Therm Anal Calorim. 2009;96(1):189–94.

    Article  CAS  Google Scholar 

  26. Ferdous D, Dalai AK, Bej SK. Pyrolysis of lignins: experimental and kinetics studies. Energy Fuels. 2002;16(6):1405–12.

    Article  CAS  Google Scholar 

  27. Cloke M, Lester E, Leney M. Effect of volatile retention on products from low temperature pyrolysis in a fixed bed batch reactor. Fuel. 1999;78:1719–28.

    Article  CAS  Google Scholar 

  28. Matham JG, Kandiyoti R. Coal pyrolysis yields from fast and slow heating in a wire-mesh apparatus with a gas sweep. Energy Fuels. 1988;2(4):505–11.

    Article  Google Scholar 

  29. Buryan P, Staff M. Pyrolysis of the waste biomass. J Therm Anal Calorim. 2008;93:637–40.

    Article  CAS  Google Scholar 

  30. Şahin Ö, Özdemir M, Aslanolu M. Calcination kinetics of ammonium pentaborate using the Coats-Redfern and genetic algorithm method by thermal analysis. Ind Eng Chem Res. 2001;40(6):1465–70.

    Article  Google Scholar 

  31. Kok MV, Keskin C. Comparative combustion kinetics for in situ combustion process. Thermochim Acta. 2001;369(1):143–7.

    Article  CAS  Google Scholar 

  32. Coats A, Redfern J. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  33. Nie QH, Sun SZ, Li ZQ. Thermogravimetric analysis on the combustion characteristics of brown coal blends. J Combust Sci Technol. 2001;7(1):72–6.

    CAS  Google Scholar 

  34. Wang C, FengyinWang QirongYang. Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass Bioenergy. 2009;33:50–6.

    Article  Google Scholar 

  35. Tsamba AJ, Yang W, Blasiak W. Pyrolysis characteristics and global kinetics of coconut and cashew nut shells. Fuel. 2006;86:523–30.

    Google Scholar 

  36. Liang XH, Kozinski JA. Numerical modeling of combustion and pyrolysis of cellulosic biomass in thermogravimetric systems. Fuel. 2000;79:1477–86.

    Article  CAS  Google Scholar 

  37. Yu LJ, Wang S, Jiang XM. Thermal analysis studies on combustion characteristics of seaweed. J Therm Anal Calorim. 2008;93(2):611–7.

    Article  CAS  Google Scholar 

  38. Zhou L, Wang Y, Huang Q. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Process Technol. 2006;87:963–9.

    Article  CAS  Google Scholar 

  39. Sutcu H. Pyrolysis by thermogravimetric analysis of blends of peat with coals of different characteristics and biomass. J Chin Inst Chem Eng. 2007;38:245–9.

    Article  CAS  Google Scholar 

  40. Orfao JJM, Antunes FJA, Figueiredo JL. Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel. 1999;78:349–58.

    Article  CAS  Google Scholar 

  41. Biagini E, Lippi F, Petarca L. Devolatilization rate of biomasses and coal-biomass blends: an experimental investigation. Fuel. 2002;81:1041–50.

    Article  CAS  Google Scholar 

  42. Yang H, Yan R, Chen H. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  43. McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83:37–46.

    Article  CAS  Google Scholar 

  44. Gani A, Naruse I. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energy. 2007;32:649–61.

    Article  CAS  Google Scholar 

  45. Janse AMC, de Jonge HG, Prins W. The combustion kinetics of char obtained by flash pyrolysis of pine wood. Ind Eng Chem Res. 1998;37:3909–18.

    Article  CAS  Google Scholar 

  46. Varhegyi G, Meszaros E, Antal M. Combustion kinetics of corncob charcoal and partially demineralized corncob charcoal in the kinetic regime. Ind Eng Chem Res. 2006;45:4962–70.

    Article  CAS  Google Scholar 

  47. Kashiwagi T, Nambu H. Global kinetic constants for thermal oxidative degradation of a cellulosic sample. Combust Flame. 1992;88:345–68.

    Article  CAS  Google Scholar 

  48. Fang MX, Shen DK, Li YX. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. J Anal Appl Pyrolysis. 2006;77:22–7.

    Article  CAS  Google Scholar 

  49. Quan C, Li AM, Gao NB. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Manage. 2009;29(8):2353–60.

    Article  CAS  Google Scholar 

  50. Chan WCR, Kelbon M, Krieger-Brockett B. Single-particle biomass pyrolysis: correlations of reaction products with process conditions. Ind Eng Chem Res. 1988;27(12):2261–75.

    Article  CAS  Google Scholar 

  51. Encinar JM, et al. Pyrolysis of two agricultural residues: olive and grape bagasse. Influence of particle size and temperature. Biomass Bioenergy. 1996;11(5):397–409.

    Article  CAS  Google Scholar 

  52. Zhang X, et al. Study on biomass pyrolysis kinetics. J Eng Gas Turbines Power. 2006;128(3):493–6.

    Article  CAS  Google Scholar 

  53. Aboulkas A, et al. Pyrolysis kinetics of olive residue/plastic mixtures by non-isothermal thermogravimetry. Fuel Process Technol. 2009;90(5):722–8.

    Article  CAS  Google Scholar 

  54. Vuthaluru HB. Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis. Bioresour Technol. 2004;92(2):187–95.

    Article  CAS  Google Scholar 

  55. Sonobe T, Worasuwannarak N, Pipatmanomai S. Synergies in co-pyrolysis of Thai lignite and corncob. Fuel Process Technol. 2008;89(12):1371–8.

    Article  CAS  Google Scholar 

  56. Garc I, et al. Co-pyrolysis of sugarcane bagasse with petroleum residue. Part I: thermogravimetric analysis. Fuel. 2001;80(9):1245–58.

    Article  Google Scholar 

  57. Sharypov VI, et al. Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part I: influence of experimental conditions on the evolution of solids, liquids and gases. J Anal Appl Pyrolysis. 2002;64(1):15–28.

    Article  CAS  Google Scholar 

  58. Kastanaki E, Vamvuka D. A comparative reactivity and kinetic study on the combustion of coal-biomass char blends. Fuel. 2006;85(9):1186–93.

    Article  CAS  Google Scholar 

  59. Haykiri-Acma H, Yaman S. Effect of biomass on burnouts of Turkish lignites during co-firing. Energy Convers Manag. 2009;50(9):2422–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Natural Science Funds of China (No. 50976086), ESPRC (EP/F061188/1), and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houzhang Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Si, J., Tan, H. et al. Kinetics investigation on the combustion of waste capsicum stalks in Western China using thermogravimetric analysis. J Therm Anal Calorim 109, 403–412 (2012). https://doi.org/10.1007/s10973-011-1556-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1556-z

Keywords

Navigation