Skip to main content
Log in

Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications

  • Review Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Continuous research in prominent fields such as biotechnology, biomedicine and nanopharmaceutics has brought the development of a widespread class of materials, and studies for mesoporous materials have been exponentially growing lately. The purpose of this review is to provide a useful guide for different materials, methods and configurations that have been reported in the last 5 years for the synthesis of spherical mesoporous silica particles (MSP), in the colloidal size range (1–1000 nm). MSP exhibit several limitations that must be overcome in order to enable their medical and clinical use. Surface modification of these particles will allow getting new promising characteristics of these materials, including better drug release control and biocompatibility improvement. These modified MSP could be potentially used in many biomedical applications, especially for drug delivery systems. Emphasis is made on the pore size, diameter and shape of the final particles since these parameters will establish key characteristics, i.e., drug delivery profile, loading capacity and efficiency.

Graphical Abstract

Spreading the use of mesoporous silica particles in biomedicine is possible by the improvement of its inner characteristics through surface modification. This may be done by chemical functionalization or by coating with macromolecular layers or brushes, thus creating novel responsive core–shell hybrid composites to be used as carriers for drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mamaeva V, Sahlgren C, Lindén M (2013) Mesoporous silica nanoparticles in medicine—recent advances. Adv Drug Deliv Rev 65:689–702

    Article  Google Scholar 

  2. Carlsson N, Gustafsson H, Thörn C et al (2014) Enzymes immobilized in mesoporous silica: a physical—chemical perspective. Adv Colloid Interface Sci 205:339–360

    Article  Google Scholar 

  3. Popat A, Hartono SB, Stahr F et al (2011) Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale 3:2801–2818

    Article  Google Scholar 

  4. IUPAC (2014) Compendium of Chemical Terminology—Gold Book, edition 2.3.3., 979 of 1622

  5. Teng I-T, Chang Y-J, Wang L-S et al (2013) Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials 34:7462–7470

    Article  Google Scholar 

  6. Chen Q, Han L, Gao C, Che S (2010) Synthesis of monodispersed mesoporous silica spheres (MMSSs) with controlled particle size using gemini surfactant. Microporous Mesoporous Mater 128:203–212

    Article  Google Scholar 

  7. Yano K, Nishi T (2012) A novel route to highly monodispersed mesoporous silica spheres consisting of nano-sized particles. Microporous Mesoporous Mater 158:257–263

    Article  Google Scholar 

  8. Beck JS, Schmitt KD, Higgins JB, Schlenkert JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843

    Article  Google Scholar 

  9. Zhao D, Feng J, Huo Q et al (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50–300 Å pores. Science 279:548–552

    Article  Google Scholar 

  10. Zhao D, Huo Q, Feng J et al (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036

    Article  Google Scholar 

  11. Ra A, Real RP, Pe J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311

    Article  Google Scholar 

  12. Chen Y, Shi X, Han B et al (2012) The complete control for the nanosize of spherical MCM-41. J Nanosci Nanotechnol 12:7239–7249

    Article  Google Scholar 

  13. He Y, Xu H, Ma S et al (2014) Fabrication of mesoporous spherical silica nanoparticles and effects of synthesis conditions on particle mesostructure. Mater Lett 131:361–365

    Article  Google Scholar 

  14. Shibata H, Chiba Y, Kineri T et al (2010) The effect of heat treatment on the interplanar spacing of the mesostructure during the synthesis of mesoporous MCM-41 silica. Colloids Surfaces A Physicochem Eng Asp 358:1–5

    Article  Google Scholar 

  15. Fuertes AB, Valle-Vigón P, Sevilla M (2010) Synthesis of colloidal silica nanoparticles of a tunable mesopore size and their application to the adsorption of biomolecules. J Colloid Interface Sci 349:173–180

    Article  Google Scholar 

  16. Lee S, Yun H-S, Kim S-H (2011) The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials 32:9434–9443

    Article  Google Scholar 

  17. Cho E-B, Volkov DO, Sokolov I (2011) Ultrabright fluorescent silica mesoporous silica nanoparticles: control of particle size and dye loading. Adv Funct Mater 21:3129–3135

    Article  Google Scholar 

  18. Wang T, Jiang H, Zhao Q et al (2012) Enhanced mucosal and systemic immune responses obtained by porous silica nanoparticles used as an oral vaccine adjuvant: effect of silica architecture on immunological properties. Int J Pharm 436:351–358

    Article  Google Scholar 

  19. Tan S, Wu Q, Wang J et al (2011) Dynamic self-assembly synthesis and controlled release as drug vehicles of porous hollow silica nanoparticles. Microporous Mesoporous Mater 142:601–608

    Article  Google Scholar 

  20. Jia L, Shen J, Li Z et al (2013) In vitro and in vivo evaluation of paclitaxel-loaded mesoporous silica nanoparticles with three pore sizes. Int J Pharm 445:12–19

    Article  Google Scholar 

  21. Jia L, Shen J, Li Z et al (2012) Successfully tailoring the pore size of mesoporous silica nanoparticles: exploitation of delivery systems for poorly water-soluble drugs. Int J Pharm 439:81–91

    Article  Google Scholar 

  22. He Q, Shi J, Chen F et al (2010) An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials 31:3335–3346

    Article  Google Scholar 

  23. Shi Y-T, Cheng H-Y, Geng Y et al (2010) The size-controllable synthesis of nanometer-sized mesoporous silica in extremely dilute surfactant solution. Mater Chem Phys 120:193–198

    Article  Google Scholar 

  24. Ukmar T, Maver U, Planinšek O et al (2011) Understanding controlled drug release from mesoporous silicates: theory and experiment. J Control Release 155:409–417

    Article  Google Scholar 

  25. Nandiyanto ABD, Kim S-G, Iskandar F, Okuyama K (2009) Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Microporous Mesoporous Mater 120:447–453

    Article  Google Scholar 

  26. Palantavida S, Guz NV, Woodworth CD, Sokolov I (2013) Ultrabright fluorescent mesoporous silica nanoparticles for prescreening of cervical cancer. Nanomed Nanotechnol Biol Med 9:1255–1262

    Article  Google Scholar 

  27. Mukherjee I, Mylonakis A, Guo Y et al (2009) Effect of nonsurfactant template content on the particle size and surface area of monodisperse mesoporous silica nanospheres. Microporous Mesoporous Mater 122:168–174

    Article  Google Scholar 

  28. Filipović R, Obrenović Z, Stijepović I et al (2009) Synthesis of mesoporous silica particles with controlled pore structure. Ceram Int 35:3347–3353

    Article  Google Scholar 

  29. Xu W, Gao Q, Xu Y et al (2009) Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres. Powder Technol 191:13–20

    Article  Google Scholar 

  30. Eltohamy M, Shin US, Kim H-W (2011) Silica nanoparticles with enlarged nanopore size for the loading and release of biological proteins. Mater Lett 65:3570–3573

    Article  Google Scholar 

  31. Ruthstein S, Schmidt J, Kesselman E et al (2006) Resolving intermediate solution structures during the formation of mesoporous SBA-15. J Am Chem Soc 128:3366–3374

    Article  Google Scholar 

  32. Wang Y, Zhang F, Wang Y et al (2009) Synthesis of length controllable mesoporous SBA-15 rods. Mater Chem Phys 115:649–655

    Article  Google Scholar 

  33. Lee H-I, Kim J-H, Stucky G et al (2010) Morphology-selective synthesis of mesoporous SBA-15 particles over micrometer, submicrometer and nanometer scales. J Mater Chem 20:8483–8487

    Article  Google Scholar 

  34. Johansson EM, Ballem MA (2011) Rapid synthesis of SBA-15 rods with variable lengths, widths, and tunable large pores. Langmuir 27:4994–4999

    Article  Google Scholar 

  35. Benamor T, Vidal L, Lebeau B, Marichal C (2012) Influence of synthesis parameters on the physico-chemical characteristics of SBA-15 type ordered mesoporous silica. Microporous Mesoporous Mater 153:100–114

    Article  Google Scholar 

  36. Guo Z, Liu X-M, Ma L et al (2013) Effects of particle morphology, pore size and surface coating of mesoporous silica on Naproxen dissolution rate enhancement. Colloids Surf B Biointerfaces 101:228–235

    Article  Google Scholar 

  37. Mendes LS, Saska S, Martines MAU, Marchetto R (2013) Nanostructured materials based on mesoporous silica and mesoporous silica/apatite as osteogenic growth peptide carriers. Mater Sci Eng, C 33:4427–4434

    Article  Google Scholar 

  38. Aktas O, Yasyerli S, Dogu G, Dogu T (2011) Structural variations of MCF and SBA-15-like mesoporous materials as a result of differences in synthesis solution pH. Mater Chem Phys 131:151–159

    Article  Google Scholar 

  39. Diao X, Wang Y, Zhao J, Zhu S (2010) Effect of pore-size of mesoporous SBA-15 on adsorption of bovine serum albumin and lysozyme protein. Chinese J Chem Eng 18:493–499. doi:10.1016/S1004-9541(10)60248-0

    Article  Google Scholar 

  40. Tadjarodi A, Zabihi F, Afshar S (2013) Experimental investigation of thermo-physical properties of platelet mesoporous SBA-15 silica particles dispersed in ethylene glycol and water mixture. Ceram Int 39:7649–7655

    Article  Google Scholar 

  41. Mesa M, Sierra L, Guth J (2008) Contribution to the study of the formation mechanism of mesoporous SBA-15 and SBA-16 type silica particles in aqueous acid solutions. Microporous Mesoporous Mater 112:338–350

    Article  Google Scholar 

  42. Zholobenko VL, Khodakov AY, Impéror-Clerc M et al (2008) Initial stages of SBA-15 synthesis: an overview. Adv Colloid Interface Sci 142:67–74

    Article  Google Scholar 

  43. Yoo J-W, Doshi N, Mitragotri S (2011) Adaptive micro and nanoparticles: temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev 63:1247–1256

    Article  Google Scholar 

  44. Xing R, Lin H, Jiang P, Qu F (2012) Biofunctional mesoporous silica nanoparticles for magnetically oriented target and pH-responsive controlled release of ibuprofen. Colloids Surfaces A Physicochem Eng Asp 403:7–14

    Article  Google Scholar 

  45. Wan H, Liu L, Li C et al (2009) Facile synthesis of mesoporous SBA-15 silica spheres and its application for high-performance liquid chromatography. J Colloid Interface Sci 337:420–426

    Article  Google Scholar 

  46. Zhao H, Li W, Du M et al (2013) A facile strategy to synthesize spherical SBA-15 silicas by the addition of poly(vinyl alcohol). Mater Lett 92:33–35

    Article  Google Scholar 

  47. Zhao Y, Wu D, Tang T, Sun Y (2013) One-step synthesis of hydrophobic mesoporous silica ellipsoidal particles with a bimodal mesopore system. Mater Res Bull 48:4839–4843

    Article  Google Scholar 

  48. Cao L, Man T, Kruk M (2009) Synthesis of ultra-large-pore SBA-15 silica with two-dimensional hexagonal structure using Triisopropylbenzene as micelle expander. Chem Mater 21:1144–1153

    Article  Google Scholar 

  49. Cao L, Kruk M (2010) Synthesis of large-pore SBA-15 silica from tetramethyl orthosilicate using triisopropylbenzene as micelle expander. Colloids Surfaces A Physicochem Eng Asp 357:91–96

    Article  Google Scholar 

  50. Dos Santos SML, Nogueira KAB, de Souza Gama M et al (2013) Synthesis and characterization of ordered mesoporous silica (SBA-15 and SBA-16) for adsorption of biomolecules. Microporous Mesoporous Mater 180:284–292

    Article  Google Scholar 

  51. Crommelin DJA, Florence AT (2013) Towards more effective advanced drug delivery systems. Int J Pharm 454:496–511

    Article  Google Scholar 

  52. Sierra L, Valange S, Guth J-L (2009) Formation mechanism and morphology of mesoporous SBA-16 type silica particles prepared with the triblock copolymer surfactant PEO140PPO39PEO140. Microporous Mesoporous Mater 124:100–109

    Article  Google Scholar 

  53. Ballem MA, Córdoba JM, Odén M (2010) Influence of synthesis temperature on morphology of SBA-16 mesoporous materials with a three-dimensional pore system. Microporous Mesoporous Mater 129:106–111

    Article  Google Scholar 

  54. Hu Y, Wang J, Zhi Z et al (2011) Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug. J Colloid Interface Sci 363:410–417

    Article  Google Scholar 

  55. Almeida R, Pires CT, Airoldi C (2012) The influence of secondary structure directing agents on the formation of mesoporous SBA-16 silicas. Chem Eng J 203:36–42

    Article  Google Scholar 

  56. Andrade GF, Soares D, Almeida R, Sousa E (2012) Mesoporous silica SBA-16 functionalized with alkoxysilane groups: preparation, characterization, and release profile study. J Nanomater 2012:1–10

    Google Scholar 

  57. Andrade GF, Soares D, dos Santos R, Sousa E (2013) Mesoporous silica SBA-16 nanoparticles: synthesis, physicochemical characterization, release profile, and in vitro cytocompatibility studies. Microporous Mesoporous Mater 168:102–110

    Article  Google Scholar 

  58. Ho S-T, Dinh Q-K, Tran T-H et al (2013) One-step synthesis of ordered Sn-substituted SBA-16 mesoporous materials using prepared silica source of rice husk and their selectively catalytic activity. Can J Chem Eng 91:34–46

    Article  Google Scholar 

  59. Han Y, Ying JY (2004) Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures. Angew Chem Int Ed Engl 44:288–292

    Article  Google Scholar 

  60. Wang W, Qi R, Shan W et al (2014) Synthesis of KIT-6 type mesoporous silicas with tunable pore sizes, wall thickness and particle sizes via the partitioned cooperative self-assembly process. Microporous Mesoporous Mater 194:167–173

    Article  Google Scholar 

  61. Xu L, Wang C, Guan J (2014) Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction. J Solid State Chem 213:250–255

    Article  Google Scholar 

  62. Ohkubo T, Ogura T, Sakai H, Abe M (2007) Synthesis of highly-ordered mesoporous silica particles using mixed cationic and anionic surfactants as templates. J Colloid Interface Sci 312:42–46

    Article  Google Scholar 

  63. Han L, Zhou Y, He T et al (2013) One-pot morphology-controlled synthesis of various shaped mesoporous silica nanoparticles. J Mater Sci 48:5718–5726

    Article  Google Scholar 

  64. Lee Y-G, Oh C, Yoo S-K et al (2005) New approach for the control of size and surface characteristics of mesoporous silica particles by using mixed surfactants in W/O emulsion. Microporous Mesoporous Mater 86:134–144

    Article  Google Scholar 

  65. Jo C, Kim K, Ryoo R (2009) Syntheses of high quality KIT-6 and SBA-15 mesoporous silicas using low-cost water glass, through rapid quenching of silicate structure in acidic solution. Microporous Mesoporous Mater 124:45–51

    Article  Google Scholar 

  66. Martínez ML, Ponte MV, Beltramone AR, Anunziata OA (2014) Synthesis of ordered mesoporous SBA-3 materials using silica gel as silica source. Mater Lett 134:95–98

    Article  Google Scholar 

  67. Lei C, Chen B, Li X et al (2013) Non-destructively shattered mesoporous silica for protein drug delivery. Microporous Mesoporous Mater 175:157–160

    Article  Google Scholar 

  68. Nair R, Yoshida Y, Maekawa T, Kumar DS (2012) Size tuning and oxygen plasma induced pore formation on silica nanoparticles. Prog Nat Sci Mater Int 22:193–200

    Article  Google Scholar 

  69. DeMuth P, Hurley M, Wu C et al (2011) Mesoscale porous silica as drug delivery vehicles: synthesis, characterization, and pH-sensitive release profiles. Microporous Mesoporous Mater 141:128–134

    Article  Google Scholar 

  70. Nikolić MP, Giannakopoulos KP, Bokorov M, Srdić VV (2012) Effect of surface functionalization on synthesis of mesoporous silica core/shell particles. Microporous Mesoporous Mater 155:8–13

    Article  Google Scholar 

  71. Wang L, Wu L, Lu S et al (2010) Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: improved water suspensibility and decreased. ACS Nano 4:4371–4379

    Article  Google Scholar 

  72. Bhattacharyya S, Wang H, Ducheyne P (2012) Polymer-coated mesoporous silica nanoparticles for the controlled release of macromolecules. Acta Biomater 8:3429–3435

    Article  Google Scholar 

  73. Peng H, Dong R, Wang S et al (2013) A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly (acrylic acid) shell-layers: fabrication, characterization and properties for controlled release of salidroside. Int J Pharm 446:153–159

    Article  Google Scholar 

  74. Wang G, Otuonye AN, Blair EA et al (2009) Functionalized mesoporous materials for adsorption and release of different drug molecules: a comparative study. J Solid State Chem 182:1649–1660

    Article  Google Scholar 

  75. Sun YY-L, Wang L, Ma J et al (2014) Nanoassembles constructed from mesoporous silica nanoparticles and surface-coated multilayer polyelectrolytes for controlled drug delivery. Microporous Mesoporous Mater 185:245–253

    Article  Google Scholar 

  76. Cauda V, Schlossbauer A, Bein T (2010) Bio-degradation study of colloidal mesoporous silica nanoparticles: effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous Mesoporous Mater 132:60–71

    Article  Google Scholar 

  77. Xie M, Xu Y, Shen H et al (2014) Negative-charge-functionalized mesoporous silica nanoparticles as drug vehicles targeting hepatocellular carcinoma. Int J Pharm 474:223–231

    Google Scholar 

  78. Chen X, Cheng X, Soeriyadi AH et al (2014) Stimuli-responsive functionalized mesoporous silica nanoparticles for drug release in response to various biological stimuli. Biomater Sci 2:121

    Article  Google Scholar 

  79. Chen L, Zhang Z, Yao X et al (2015) Intracellular pH-operated mechanized mesoporous silica nanoparticles as potential drug carries. Microporous Mesoporous Mater 201:169–175

    Article  Google Scholar 

  80. Hu X, Wang Y, Peng B (2014) Chitosan-capped mesoporous silica nanoparticles as pH-responsive nanocarriers for controlled drug release. Chem Asian J 9:319–327

    Article  Google Scholar 

  81. Chen H, Khemtong C, Yang X et al (2011) Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 16:354–360

    Article  Google Scholar 

  82. Wu C, Zhao Z, Zhao Y et al (2014) Preparation of a push-pull osmotic pump of felodipine solubilized by mesoporous silica nanoparticles with a core-shell structure. Int J Pharm 475:298–305

    Article  Google Scholar 

  83. He Q, Gao Y, Zhang L et al (2011) A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials 32:7711–7720

    Article  Google Scholar 

  84. Zhang Y, Zhi Z, Jiang T et al (2010) Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J Control Release 145:257–263

    Article  Google Scholar 

  85. Tu J, Wang T, Shi W et al (2012) Multifunctional ZnPc-loaded mesoporous silica nanoparticles for enhancement of photodynamic therapy efficacy by endolysosomal escape. Biomaterials 33:7903–7914

    Article  Google Scholar 

  86. He Q, Zhang J, Shi J et al (2010) The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31:1085–1092

    Article  Google Scholar 

  87. Guardado-Alvarez TM, Devi LS, Russell MM et al (2013) Activation of snap-top capped mesoporous silica nanocontainers using two near-infrared photons. J Am Chem Soc 135:1400–14003

    Google Scholar 

  88. Xie M, Shi H, Li Z et al (2013) A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids Surf B Biointerfaces 110:138–147

    Article  Google Scholar 

  89. Li X, Reuben Q, Zhang J et al (2011) The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials 32:9546–9556

    Article  Google Scholar 

  90. Vivero-Escoto JL, Slowing II, Lin VS-Y (2010) Tuning the cellular uptake and cytotoxicity properties of oligonucleotide intercalator-functionalized mesoporous silica nanoparticles with human cervical cancer cells HeLa. Biomaterials 31:1325–1333

    Article  Google Scholar 

  91. Popova MD, Szegedi Á, Kolev IN et al (2012) Carboxylic modified spherical mesoporous silicas a s drug delivery carriers. Int J Pharm 436:778–785

    Article  Google Scholar 

  92. Wang J, Shen Y, Bai L et al (2014) Mesoporous silica shell alleviates cytotoxicity and inflammation induced by colloidal silica particles. Colloids Surf B Biointerfaces 116:334–342

    Article  Google Scholar 

  93. Hao N, Li LL, Zhang Q et al (2012) The shape effect of PEGylated mesoporous silica nanoparticles on cellular uptake pathway in Hela cells. Microporous Mesoporous Mater 162:14–23

    Article  Google Scholar 

  94. Zhao Y, Li Z, Kabehie S et al (2010) pH-Operated nanopistons on the surfaces of mesoporous silica nanoparticles. J Am Chem Soc 132:13016–13025

    Article  Google Scholar 

  95. Lu J, Li Z, Zink JI, Tamanoi F (2012) In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomed Nanotechnol Biol Med 8:212–220

    Article  Google Scholar 

  96. Tarn D, Xue M, Zink JI (2013) pH-Responsive dual cargo delivery from mesoporous silica nanoparticles with a metal-latched nanogate. Inorg Chem 52:2044–2049

    Article  Google Scholar 

  97. Jambhrunkar S, Qu Z, Popat A et al (2014) Modulating in vitro release and solubility of griseofulvin using functionalized mesoporous silica nanoparticles. J Colloid Interface Sci 434:218–225

    Article  Google Scholar 

  98. Yoncheva K, Popova M, Szegedi A et al (2014) Functionalized mesoporous silica nanoparticles for oral delivery of budesonide. J Solid State Chem 211:154–161

    Article  Google Scholar 

  99. Szegedi A, Popova M, Goshev I et al (2012) Controlled drug release on amine functionalized spherical MCM-41. J Solid State Chem 194:257–263

    Article  Google Scholar 

  100. Choi E, Lu J, Tamanoi F, Zink JI (2014) Drug release from three-dimensional cubic mesoporous silica nanoparticles controlled by nanoimpellers. Zeitschrift für Anorg und Allg Chemie 640:588–594

    Article  Google Scholar 

  101. Chen C, Pu F, Huang Z et al (2011) Stimuli-responsive controlled-release system using quadruplex DNA-capped silica nanocontainers. Nucleic Acids Res 39:1638–1644

    Article  Google Scholar 

  102. Gary-Bobo M, Brevet D, Benkirane-Jessel N et al (2012) Hyaluronic acid-functionalized mesoporous silica nanoparticles for efficient photodynamic therapy of cancer cells. Photodiagnosis Photodyn Ther 9:256–260

    Article  Google Scholar 

  103. Gary-Bobo M, Hocine O, Brevet D et al (2012) Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm 423:509–515

    Article  Google Scholar 

  104. Gary-Bobo M, Mir Y, Rouxel C et al (2011) Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew Chem Int Ed Engl 50:11425–11429

    Article  Google Scholar 

  105. Pan L, Liu J, He Q et al (2013) Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials 34:2719–2730

    Article  Google Scholar 

  106. Hu L, Sun C, Song A et al (2014) Alginate encapsulated mesoporous silica nanospheres as a sustained drug delivery system for the poorly water-soluble drug indomethacin. Asian J Pharm Sci 9:183–190

    Article  Google Scholar 

  107. Brevet D, Hocine O, Delalande A et al (2014) Improved gene transfer with histidine-functionalized mesoporous silica nanoparticles. Int J Pharm 471:197–205

    Article  Google Scholar 

  108. Qu Y, Feng L, Liu B et al (2014) Colloids and surfaces a: physicochemical and engineering aspects a facile strategy for synthesis of nearly white light emitting mesoporous silica nanoparticles. Colloids Surfaces A Physicochem Eng Asp 441:565–571

    Article  Google Scholar 

  109. Tsai C-H, Vivero-Escoto JL, Slowing II et al (2011) Surfactant-assisted controlled release of hydrophobic drugs using anionic surfactant templated mesoporous silica nanoparticles. Biomaterials 32:6234–6244

    Article  Google Scholar 

  110. Morelli C, Maris P, Sisci D et al (2011) PEG-templated mesoporous silica nanoparticles exclusively target cancer cells. Nanoscale 3:3198–3207

    Article  Google Scholar 

  111. Ma L, Nikzad S, Kheiri-Manjili H (2014) Curcumin-loaded guanidine functionalized PEGylated I3ad mesoporous silica nanoparticles KIT-6: practical strategy for the breast cancer therapy. Eur J Med Chem 83:646–654

    Article  Google Scholar 

  112. Li X, Hong C, Pan C (2010) Preparation and characterization of hyperbranched polymer grafted mesoporous silica nanoparticles via self-condensing atom transfer radical vinyl polymerization. Polymer (Guildf) 51:92–99

    Article  Google Scholar 

  113. Wu S, Li Z, Han J, Han S (2011) Dual colored mesoporous silica nanoparticles with pH activable rhodamine-lactam for ratiometric sensing of lysosomal acidity w. Chem Commun 47:11276–11278

    Article  Google Scholar 

  114. Kim MS, Jeon JB, Chang JY (2013) Microporous and mesoporous materials selectively functionalized mesoporous silica particles with the PEGylated outer surface and the doxorubicin-grafted inner surface: improvement of loading content and solubility. Microporous Mesoporous Mater 172:118–124

    Article  Google Scholar 

  115. Zheng J, Tian X, Sun Y et al (2013) pH-sensitive poly (glutamic acid) grafted mesoporous silica nanoparticles for drug delivery. Int J Pharm 450:296–303

    Article  Google Scholar 

  116. Wang J, Liu H, Leng F et al (2014) Autofluorescent and pH-responsive mesoporous silica for cancer-targeted and controlled drug release. Microporous Mesoporous Mater 186:187–193

    Article  Google Scholar 

  117. Zhang X, Li F, Guo S et al (2014) Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells. Biomaterials 35:3650–3665

    Article  Google Scholar 

  118. Zheng Q, Lin T, Wu H et al (2014) Mussel-inspired polydopamine coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release. Int J Pharm 463:22–26

    Article  Google Scholar 

  119. Li H, Zhang JZ, Tang Q et al (2013) Reduction-responsive drug delivery based on mesoporous silica nanoparticle core with crosslinked poly(acrylic acid) shell. Mater Sci Eng C Mater Biol Appl 33:3426–3431

    Article  Google Scholar 

  120. Zhang B, Luo Z, Liu J et al (2014) Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug delivery vehicles for liver tumor-targeted triplex therapy in vitro and in vivo. J Control Release 192:192–201

    Article  Google Scholar 

  121. Zhang Q, Ye Z, Wang S-T, Yin J (2014) Facile one-pot synthesis of PEGylated monodisperse mesoporous silica nanoparticles with controllable particle sizes. Chinese Chem Lett 25:257–260

    Article  Google Scholar 

  122. Li G, Cheng G, Xue H et al (2008) Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials 29:4592–4597

    Article  Google Scholar 

  123. Carr LR, Xue H, Jiang S (2011) Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Biomaterials 32:961–968

    Article  Google Scholar 

  124. Suzuki H, Murou M, Kitano H et al (2011) Silica particles coated with zwitterionic polymer brush: formation of colloidal crystals and anti-biofouling properties in aqueous medium. Colloids Surf B Biointerfaces 84:111–116

    Article  Google Scholar 

  125. Wang M, Yuan J, Huang X et al (2013) Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility. Colloids Surf B Biointerfaces 103:52–58

    Article  Google Scholar 

  126. Colilla M, Izquierdo-Barba I, Sánchez-Salcedo S et al (2010) Synthesis and characterization of zwitterionic SBA-15 nanostructured materials. Chem Mater 22:6459–6466

    Article  Google Scholar 

  127. Pop-Georgievski O, Rodriguez-Emmenegger C, Pereira A et al (2013) Biomimetic non-fouling surfaces: extending the concepts. J Mater Chem B 1:2859

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jairo E. Perilla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltrán-Osuna, Á.A., Perilla, J.E. Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. J Sol-Gel Sci Technol 77, 480–496 (2016). https://doi.org/10.1007/s10971-015-3874-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3874-2

Keywords

Navigation