Skip to main content
Log in

Synthesis and characterization of FePt nanoparticles and FePt nanoparticle/SiO2-matrix composite films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Superparamagnetic face-centered cubic (fcc) FePt nanoparticles were synthesized using a polyol process. The effect of reaction temperature and molar ratio of Fe(CO)5 to Pt(acac)2 on the structure, composition and morphology of nanoparticles has been investigated. The optimum processing condition has been obtained for producing well-monodisperse fcc-phase FePt nanoparticles with the 2:1 molar ratio of Fe-Pt at 220 °C. In order to circumvent the problem of FePt particle coalescence during high temperature annealing for the L10 ordering, FePt nanoparticle/SiO2-matrix composite films have been fabricated by sol–gel method. The experimental results confirm that the amorphous SiO2 matrix effectively inhibits the grain growth and particle aggregation during 700 °C annealing for 1 h. Well-monodisperse face-centered tetragonal (fct) FePt particles embedded in the SiO2 matrix can be obtained with the long-range chemical order parameter S of ~0.74, indicating partially ordered L10 phase transition in FePt/SiO2 composite films. The FePt/SiO2 system exhibits a hysteretic behavior with smaller coercive field of 1,450 Oe. The incomplete phase transition from cubic deredat height maxsium (A 1-disordered phase to tetragonal L10-ordered phase) might be responsible for it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Science 287:1989

    Article  CAS  Google Scholar 

  2. Weller D, Doerner MF (2000) Annu Rev Mater Sci 30:611

    Article  CAS  Google Scholar 

  3. Perez JM, O’Loughin T, Simeone FJ, Weissleder R, Josephson L (2002) J Am Chem Soc 124:2856

    Article  CAS  Google Scholar 

  4. Pouliquen D, Chouly C (1999) In: Arshady R (ed) Magnetic microcarriers for medical applications. Citus Books, London

    Google Scholar 

  5. Zhao M, Josephson L, Tang Y, Weissleder R (2003) Angew Chem Int Ed 42:1375

    Article  CAS  Google Scholar 

  6. Zeng H, Li J, Liu JP, Wang ZL, Sun SH (2002) Nature 420:395

    Article  CAS  Google Scholar 

  7. Lina XM, Samia ACS (2006) J Magn Magn Mater 305:100

    Article  Google Scholar 

  8. Sun SH (2006) Adv Mater 18:393

    Article  CAS  Google Scholar 

  9. Coffey KR, Parker MA, Howard JK (1995) IEEE Trans Magn 31:2737

    Article  CAS  Google Scholar 

  10. Christodoulides JA, Bonder MJ, Huang Y, Zhang Y, Stoyanov S, Hadjipanayis GC, Simopoulos A, Weller D (2003) Phys Rev B 68:054428

    Article  Google Scholar 

  11. Willoughby SD, MacLaren JM, Ohkubo T, Jeong S, McHenry M, Laughlin DE, Choi SJ, Kwon SJ (2002) J Appl Phys 91:8822

    Article  CAS  Google Scholar 

  12. Yan Q, Purkayastha A, Singh AP, Li H, Li A, Ramanujan RV, Ramanath G (2009) Nanotechnology 20:025609

    Article  CAS  Google Scholar 

  13. Rong CB, Li D, Nandwana V, Poudyal N, Ding Y, Wang ZL, Zeng H, Liu JP (2006) Adv Mater 18:2984

    Article  CAS  Google Scholar 

  14. Chen M, Kim J, Liu JP, Fan HY, Sun SH (2006) J Am Chem Soc 128:7132

    Article  CAS  Google Scholar 

  15. Nguyen HL, Howard LEM, Stinton GW, Giblin SR, Tanner BK, Terry I, Hughes AK, Ross IM, Serres A, Evans JSO (2006) Chem Mater 18:6414

    Article  CAS  Google Scholar 

  16. Yamamoto S, Morimoto Y, Tamada Y, Takahashi YK, Hono K, Ono T, Takano M (2006) Chem Mater 18:5385

    Article  CAS  Google Scholar 

  17. Nandwana V, Elkins KE, Poudyal N, Chaubey GS, Yano K, Liu JP (2007) J Phys Chem C 111:4185

    Article  CAS  Google Scholar 

  18. Tomou A, Panagiotopoulos I, Gournis D, Kooi B (2007) J Appl Phys 102:023910

    Article  Google Scholar 

  19. Weller D, Moser A, Folks L, Best ME, Lee W, Toney MF, Schwickert M, Thiele JU, Doerner MF (2000) IEEE Trans Magn 36:10

    Article  CAS  Google Scholar 

  20. Muller M, Albe K (2005) Phys Rev B 72:094203

    Article  Google Scholar 

  21. Chepulskii RV, Butler WH (2005) Phys Rev B 72:134205

    Article  Google Scholar 

  22. Dai ZR, Sun SH, Wang ZL (2001) Nano Lett 1:443

    Article  CAS  Google Scholar 

  23. Yan Q, Kim T, Purkayastha A, Ganesan PG, Shima M, Ramanath G (2005) Adv Mater 17:2233

    Article  CAS  Google Scholar 

  24. Kang S, Harrell JW, Nikles DE (2002) Nano Lett 2:1033

    Article  CAS  Google Scholar 

  25. Rong CB, Poudyal N, Chaubey GS, Nandwana V, Liu YZ, Wu YQ, Kramer MJ, Kozlov ME, Baughman RH, Liu JP (2008) J Appl Phys 103:07E131

    Article  Google Scholar 

  26. Li D, Poudyal N, Nandwana V, Jin ZQ, Elkins K, Liu JP (2006) J Appl Phys 99:08E911

    Article  Google Scholar 

  27. Yan Q, Purkayastha A, Kim T, Kroger R, Bose A, Ramanath G (2006) Adv Mater 18:2569

    Article  CAS  Google Scholar 

  28. Lee DC, Mikulec FV, Pelaez JM, Koo B, Korgel BA (2006) J Phys Chem B 110:11160

    Article  CAS  Google Scholar 

  29. Fan HY, Yang K, Boye DM, Sigmon T, Malloy KJ, Xu HF, Lopez GP, Brinker CJ (2004) Science 304:567

    Article  CAS  Google Scholar 

  30. Klemmer TJ, Shukla N, Liu C, Wu XW, Svedberg EB, Mryasov O, Chantrell RW, Weller D, Tanase M, Laughlin DE (2002) Appl Phys Lett 81:2220

    Article  CAS  Google Scholar 

  31. Heitsch AT, Lee DC, Korgel BA (2010) J Phys Chem C 114:2512

    Article  CAS  Google Scholar 

  32. Kim KJ, Lee SJ, Wiener TA, Lynch DW (2001) J Appl Phys 89:244

    Article  CAS  Google Scholar 

  33. Stahl B, Ellrich J, Theissmann R, Ghafari M, Bhattacharya S, Hahn H, Gajbhiye NS, Kramer D, Viswanath RN, Weissmuller J, Gleiter H (2003) Phys Rev B 67:14422

    Article  Google Scholar 

  34. CC YuA, Mizuno M, Sasaki Y, Inoue M, Kondo H, Ohta I, Djayaprawira D, Takahashi M (2003) Appl Phys Lett 82:4352

    Article  Google Scholar 

  35. Ethirajan A, Wiedwald U, Boyen HG, Han BKL, Klimmer A, Weigl F, Ka¨stle G, Fauth K, Cai J, RJ Behm, Romanyuk A, Oelhafen P, Walther P, Biskupek J, Kaiser U (2007) Adv Mater 19:406

    Article  CAS  Google Scholar 

  36. Wang HB, Zhou MJ, Yang FJ, Wang J, Jiang Y, Wang Y, Wang H, Li Q (2009) Chem Mater 21:404

    Article  CAS  Google Scholar 

  37. Chantrell RW, Weller D, Klemmer TJ, Sun S, Fullerton EE (2002) J Appl Phys 91:6866

    Article  CAS  Google Scholar 

  38. Sharrock MP (1990) IEEE Trans Magn 26:193

    Article  Google Scholar 

  39. Xu CJ, Yuan ZJ, Kohler N, Kim J, Maureen AC, Sun SH (2009) J Am Chem Soc 131:15346

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Natural Science Foundation of China (10974085, 10704035 and 50932001) and a grant from the State Key Program for Basic Research of China (2006CB921805, 2009ZX02039-004 and 2009CB929500). Aidong Li also thank the support from the program for the “333” Talents in Jiangsu Province and SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Dong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JL., Kong, JZ., Li, AD. et al. Synthesis and characterization of FePt nanoparticles and FePt nanoparticle/SiO2-matrix composite films. J Sol-Gel Sci Technol 64, 269–275 (2012). https://doi.org/10.1007/s10971-010-2373-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2373-8

Keywords

Navigation