Skip to main content
Log in

The molecular composition of non-modified and acac-modified propoxide and butoxide precursors of zirconium and hafnium dioxides

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Long-term storage at 0 °C of a paraffin-sealed flask with commercial 70 wt% solution of zirconium n-propoxide in n-propanol resulted in crystallization of an individual oxoalkoxide complex Zr4O(OnPr)14(nPrOH)2 in over 20% yield. The structure of this molecule can be described as a triangular Zr33-O)(OR)10(ROH) core of 3 edge-sharing octahedrons with an additional Zr(OR)4(ROH) unit attached through a pair of (μ-OR) bridges. Mass spectrometric and 1H NMR investigation of the commercial samples of the most broadly applied zirconium and hafnium n-propoxides and n-butoxides indicate the presence of analogous species in the commercial alkoxide precursors. The content of oxo-alkoxide species in the commercial precursors has been estimated to be ~20% for n-propoxide and ~35% for zirconium n-butoxide. A new route has been presented for synthesis of the individual crystalline mixed ligand precursor [Zr(OnPr)(OiPr)3(iPrOH)]2, from zirconium n-propoxide. A high yield has been observed (~90%), indicative of an almost complete precursor transformation. Mass spectrometry has shown that the synthesized mixed ligand precursor is dimeric, which makes it an attractive alternative to zirconium n-propoxide. Addition of 1 eq of Acetylacetone to zirconium or hafnium alkoxide precursors results in formation of dimeric [M(OR)3(acac)]2 in high yields. These species have limited stability (much higher for Hf than for Zr) and transform in solution into hydrolysis-insensitive M(acac)4 through very unstable M(acac)3(OR) intermediates containing 7-coordinated metal centers. This transformation can be followed kinetically in hydrocarbon solvents by 1H NMR and is noticeably accelerated by addition of parent alcohols. The obtained results clearly reveal limited applicability of EXAFS and XANES techniques for the study of such systems, especially in the context of structure prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Benfer S, Popp U, Richter H, Siewert C, Tomandl G (2001) Separ Purif Tech 22–23:231. doi:10.1016/S1383-5866(00)00133-7

    Article  Google Scholar 

  2. Vacassy RJ, Guizard C, Palmeri J, Cot L (1998) NanoStructured Mater 10:77. doi:10.1016/S0965-9773(98)00022-1

    Article  CAS  Google Scholar 

  3. Xia CR, Cao HQ, Wang H, Yang PH, Meng GY, Peng DK (1999) J Membr Sci 162:181. doi:10.1016/S0376-7388(99)00137-4

    Article  CAS  Google Scholar 

  4. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 829:405. doi:10.1246/cl.1987.405

    Article  Google Scholar 

  5. Knell A, Barnickel P, Baiker A, Wokaun A (1992) J Catal 137:306. doi:10.1016/0021-9517(92)90159-F

    Article  CAS  Google Scholar 

  6. Hoffman S, Klee M, Waser R (1995) Integr Ferroelectr 10:155. doi:10.1080/10584589508012273

    Article  Google Scholar 

  7. Klee M, Mackens U, Hermann W, Bathelt E (1995) Integr Ferroelectr 11:247. doi:10.1080/10584589508013596

    Article  CAS  Google Scholar 

  8. Day VW, Klemperer WG, Pafford MM (2001) Inorg Chem 40:5738. doi:10.1021/ic010776g

    Article  PubMed  CAS  Google Scholar 

  9. Turevskaya EP, Kozlova NI, Turova NY, Belokon AI, Berdyev DV, Kessler VG, Grishin YK (1995) Bull Russ Acad Sci (Russ) Chem (Kyoto):752

  10. Kanazhevskii VV, Shmachkova VP, Kotsarenko NS, Kolomiichuk VN, Kochubei DI (2006) J Struct Chem 47:453. doi:10.1007/s10947-006-0322-8

    Article  CAS  Google Scholar 

  11. Bauer M, Gastl C, Köppl C, Kickelbick G, Bertagnolli H (2006) Monatsh Chem 137:567. doi:10.1007/s00706-006-0450-z

    Article  CAS  Google Scholar 

  12. Bauer M, Müller S, Kickelbick G, Bertagnolli H (2007) N J Chem 31:1950. doi:10.1039/b707079a

    Article  CAS  Google Scholar 

  13. Caughlan CN, Smith HS, Katz W, Hodgson W, Crowe RW (1951) J Am Chem Soc 73:5652. doi:10.1021/ja01156a046

    Article  CAS  Google Scholar 

  14. Russo WR, Nelson WH (1970) J Am Chem Soc 92:1521. doi:10.1021/ja00709a013

    Article  CAS  Google Scholar 

  15. Vaartstra BA, Huffman JC, Gradeff PS, Hubert-Pfalzgraf LG, Daran J-C, Parraud S, Yunlu K, Caulton KG (1990) Inorg Chem 29:3126. doi:10.1021/ic00342a014

    Article  CAS  Google Scholar 

  16. Boyle TJ, Gallegos JJ, Pedrotty DM, Mechenbier ER, Scott BL (1999) J Coord Chem 47:155. doi:10.1080/00958979908024550

    Article  CAS  Google Scholar 

  17. Seisenbaeva GA, Gohil S, Kessler VG (2004) J Mater Chem 14(21):3177. doi:10.1039/b404303k

    Article  CAS  Google Scholar 

  18. Spijksma GI, Bouwmeester HJM, Blank DHA, Kessler VG (2004) Chem Comm 1874

  19. SHELXTL-NT program manual, Bruker AXS 1998

  20. Veith M, Mathur S, Mathur C, Huch V (1997) J Chem Soc, Dalton Trans 2101. doi:10.1039/a700833c

  21. Hagfeldt C, Kessler V, Persson I (2004) Dalton Trans 2142. doi:10.1039/b402804j

  22. Kessler VG, Spijksma GI, Seisenbaeva GA, Håkansson S, Blank DHA, Bouwmeester HJM (2006) Sol-Gel Sci Tech 42:163

    Article  Google Scholar 

  23. Starikova ZA, Kessler VG, Turova NY, Tcheboukov DE, Suslova EV, Seisenbaeva GA, Yanovsky AI (2004) Polyhedron 23:109. doi:10.1016/j.poly.2003.09.031

    Article  CAS  Google Scholar 

  24. Fleeting KA, O’Brien P, Otway DJ, White AJP, Williams DJ, Jones AC (1999) Inorg Chem 38:1432–1437. doi:10.1021/ic980690w

    Article  CAS  Google Scholar 

  25. Spijksma GI, Bouwmeester HJM, Blank DHA, Fischer A, Henry M, Kessler VG (2006) Inorg Chem 44:9938

    Google Scholar 

  26. Jones AC, Leedham TJ, Wright PJ, Crosbie MJ, Lane PA, Williams DJ, Fleeting KA, Otway DJ, O’Brien P (1998) Chem Vap Deposition 4:46. doi:10.1002/(SICI)1521-3862(199803)04:02<46::AID-CVDE46>3.0.CO;2-1

    Article  CAS  Google Scholar 

  27. Jones AC, Leedham TJ, Wright PJ, Crosbie MJ, Williams DJ, Fleeting KA, Davies HO, Otway DJ, O’Brien P (1998) Chem Vap Deposition 4:197. doi:10.1002/(SICI)1521-3862(199810)04:05<197::AID-CVDE197>3.3.CO;2-U

    Article  CAS  Google Scholar 

  28. Patil U, Winter M, Becker HW, Devi A (2003) J Mater Chem 13:2177–2184. doi:10.1039/b304419j

    Article  CAS  Google Scholar 

  29. Baunemann A, Thomas R, Becker R, Winter M, Fischer RA, Ehrhart P, Waser R, Devi A (2004) Chem Commun (Camb) 1610–1611. doi:10.1039/b405015k

  30. Kessler VG, Gohil S, Parola S (2003) Dalton Trans 544. doi:10.1039/b206662a

  31. Kreiter R, Rietkerk MDA, Bonekamp BC, van Veen HM, Kessler VG, Vente JFJ (2008) Sol–Gel Sci Tech (Paris) 48:203

    Article  CAS  Google Scholar 

  32. Vioux A (1997) Chem Mater 9:2292. doi:10.1021/cm970322a

    Article  CAS  Google Scholar 

  33. Turova NY, Turevskaya EP, Kessler VG, Yanovskaya MI (2002) The chemistry of metal alkoxides. Kluwer AP, Dordrecht

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Rolf Andersson and Dr. Corine Sandström for the assistance with the NMR analysis and to Suresh Gohil for performing the mass spectrometry experiments. Dr. ir. Nieck E. Benes (University of Eindhoven) is kindly acknowledged for the scientific discussions. We thank the Swedish Research Council (Vetenskapsrådet) and the Dutch Economy-Ecology-Technology (EET) program for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim G. Kessler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 83 kb)

(DOC 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spijksma, G.I., Seisenbaeva, G.A., Fischer, A. et al. The molecular composition of non-modified and acac-modified propoxide and butoxide precursors of zirconium and hafnium dioxides. J Sol-Gel Sci Technol 51, 10–22 (2009). https://doi.org/10.1007/s10971-009-1988-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1988-0

Keywords

Navigation