Skip to main content
Log in

Study the property of double-ended fluoroalkyl poly(ethylene glycol) hydrogel as a depot for hydrophobic drug delivery using electron paramagnetic resonance technique and cell proliferation assay

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hydrogel formed by fluoroalkyl double-ended polyethylene glycol (Rf-PEG) micelles was studied to assess its properties to encapsulate a hydrophobic electron spin labeled drug, Chlorambucil–Tempol adduct (CT), and to control and sustain the drug release. The drug loaded hydrogel samples were characterized with variable-temperature dependent EPR experiment, and EPR theoretical lineshape analysis. It was found that CT molecules reside in the hydrophobic Rf-cores/IPDU shells of the Rf-PEG micelles and the maximum molecular-level loading capacity was estimated to be 18.8 mg per gram of the Rf-PEG. It has been known that Rf-PEG hydrogel with certain molecular masses for the fluoroalkyl group and the PEG chain shows properties of sol/gel phase coexistence and surface erosion, which represent the favorable condition for a pharmaceutical depot to control the kinetics of drug release. To evaluate the Rf-PEG’s biocompatibility and kinetics of the drug release, a cell proliferation assay was carried out on human oropharyngeal carcinoma (KB) cells. The results show that Rf-PEG is biocompatible and able to release CT to the cell media with a constant equilibrium concentration independent of the amount of CT loaded hydrogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Harris JM (1992) Poly(ethylene glycol) chemistry biotechnical and biomedical application. Plenum Press, New York

    Google Scholar 

  2. Wang F, Bronich TK, Kabanov AV, Rauh RD, Roovers J (2005) Bioconjug Chem 16:397–405

    Article  CAS  Google Scholar 

  3. Zeng F, Liu J, Allen C (2004) Biomacromolecules 5:1810–1817

    Article  CAS  Google Scholar 

  4. Lavasanifar A, Samuel J, Kwon GS (2002) Adv Drug Deliv Rev 54:169–190

    Article  CAS  Google Scholar 

  5. La SB, Okano T, Kataoka K (1996) J Pharm Sci 85:85–90

    Article  CAS  Google Scholar 

  6. Soo PL, Luo L, Maysinger D, Eisenberg A (2002) Langmuir 18:9996–10004

    Article  CAS  Google Scholar 

  7. Kwon GS, Kataoka K (1995) Adv Drug Deliv Rev 16:295–309

    Article  CAS  Google Scholar 

  8. Hamley IW (2000) Introduction to soft matter. John Wiley & Sons, Chichester

    Google Scholar 

  9. Torchilin VP (2001) J Control Release 73:137–172

    Article  CAS  Google Scholar 

  10. Tae G, Kornfield JA, Hubbell JA, Johannsmann D, Hogen-Esch TE (2001) Macromolecules 34:6409–6419

    Article  CAS  Google Scholar 

  11. Xu B, Li L, Yekta A, Masoumi Z, Kanagalingam S, Winnik MA, Zhang K, Macdonald PM (1997) Langmuir 13:2447–2456

    Article  CAS  Google Scholar 

  12. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Chem Rev 99:3181–3198

    Article  CAS  Google Scholar 

  13. Ambade AV, Savariar EN, Thayumanavan S (2005) Mol Pharm Reviews:A-I

  14. El-Nokaly MA, Piatt DM, Charpentier BA (1993) Polymeric delivery systems: properties and applications. American Chemical Society, Washington, DC

    Google Scholar 

  15. Yokoyama M, Kwon GS, Okano T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K (1991) Cancer Res 51:3229–3236

    CAS  Google Scholar 

  16. Yokoyama M, Okano T, Sakurai Y, Naito M, Kataoka K (1994) J Control Release 28:59–65

    Article  CAS  Google Scholar 

  17. Shuai X, Merdan T, Schaper AK, Xi F, Kissel T (2004) Bioconjug Chem 15:441–448

    Article  CAS  Google Scholar 

  18. Ge H, Hu, Y, Jiang X, Cheng D, Yuan Y, Bi H, Yang C (2002) J Pharm Sci 91:1463–1473

    Article  CAS  Google Scholar 

  19. Brigger I, Chaminade P, Marsaud V, Appel M, Besnard M, Gurny R, Renoir M, Couvreur P (2001) Int J Pharm 214:37–42

    Article  CAS  Google Scholar 

  20. Jette KK, Law D, Schmitt EA, Kwon GS (2004) Pharm Res 21:1184–1191

    Article  CAS  Google Scholar 

  21. Opanasopit P, Ngawhirunpat T, Chaidedgumjorn A, Rojanarata T, Apirakaramwong A, Phongying S, Choochottiros C, Chirachanchai S (2006) Eur J Pharm Biopharm 64:269–276

    Article  CAS  Google Scholar 

  22. Francis MF, Lavoie L, Winnik FM, Leroux J-C (2003) Eur J Pharm Biopharm 56:337–346

    Article  CAS  Google Scholar 

  23. Martini G, Morandi S, Rossi S, Ristori S (2004) Prog Colloid Polym Sci 126:146–150

    CAS  Google Scholar 

  24. Martini G, Balzi M, Becciolini A, Ristori S, Rossi S (2004) J Fluor Chem 125:253–259

    Article  CAS  Google Scholar 

  25. Prabhutendolkar A, Mathias E, Liu L, Ba Y, Kornfield JA (2005) 229th ACS National Meeting. Poster, Polymer and Sci-Mix Sections, San Diego

  26. Prabhutendolkar A, Liu X, Mathias E, Ba Y, Kornfield JA (2006) Drug Deliv 13:433–440

    Article  CAS  Google Scholar 

  27. Farmer PB (1987) Pharmacol Ther 35:301–358

    Article  CAS  Google Scholar 

  28. Mclean A, Newell D, Baker G, Connors T (1980) Biochem Pharmacol 29:2039–2047

    Article  CAS  Google Scholar 

  29. Deluca PP, Mehta RC, Hausherger AG, Thanoo BC (1993) Polymeric delivery systems. Washington, DC

  30. Bader H, Ringsdorf H, Schmidt B (1984) Angew Makromol Chem 123/124:457–485

    CAS  Google Scholar 

  31. Kopecek J (1977) Polym Med 7:191–221

    CAS  Google Scholar 

  32. Pietschmann C (2001) Livingbridges 54–57

  33. Panasci L, Paiement JP, Christodoulopoulos G, Belenkov A, Malapetsa A, Aloyz R (2001) Clin Cancer Res 7:454–461

    CAS  Google Scholar 

  34. Monti E, Supino R, Colleoni M, Costa B, Ravizza R, Gariboldi M (2001) J Cell Biochem 82:271–276

    Article  CAS  Google Scholar 

  35. Ravizza R, Cereda E, Monti E, Gariboldi M (2004) Int J Oncol 25:1817–1822

    CAS  Google Scholar 

  36. Bell JE (1981) Spectroscopy in biochemistry, vol II. CRC Press, Inc, Boca Raton

    Google Scholar 

  37. Kivelson D (1960) J Chem Phys 33:1094–1106

    Article  CAS  Google Scholar 

  38. Goldman SA, Bruno GV, Freed JH (1972) J Phys Chem 76:1858–1860

    Article  CAS  Google Scholar 

  39. Hudson A, Luckhurst GR (1969) Chem Rev 69:191–225

    Article  CAS  Google Scholar 

  40. Woliñka-Grabczyk A, Bednarski W, Jankowski A, Waplak S (2005) Polymer 46:2461–2471

    Article  Google Scholar 

  41. Scheuermann R, Roduner E, Batchelor SN (2001) J Phys Chem B 105:11474–11479

    Article  CAS  Google Scholar 

  42. Tae G, Kornfield JA, Hubbell JA, Lal J (2002) Macromolecules 35:4448–4457

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project is supported by the NSF Grant 0351848. Thanks to DOD for funding the EPR spectrometer under the grant d20030904hsi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Mao, Y., Mathias, E.V. et al. Study the property of double-ended fluoroalkyl poly(ethylene glycol) hydrogel as a depot for hydrophobic drug delivery using electron paramagnetic resonance technique and cell proliferation assay. J Sol-Gel Sci Technol 45, 269–278 (2008). https://doi.org/10.1007/s10971-007-1659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1659-y

Keywords

Navigation