Skip to main content
Log in

Enhanced uranium bioleaching high-fluorine and low-sulfur uranium ore by a mesophilic acidophilic bacterial consortium with pyrite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The high level of fluorine and low sulfur in the ore could significantly undermine the bioleaching effectiveness. Here, a strategy to improve the bioleaching efficiency by introducing fluoride-resistant mesophilic eosinophils coupled with pyrite supplement was investigated in a bioleaching system with such ore. The results of column and heap bioleaching showed that 89.25% and 90.40% of uranium were recovered with the consortium and pyrite addition, which increased the uranium leaching rates by 13.22% and 8.96% as compared with the sulfuric acid leaching. Hence, it provides a method to improve uranium bioleaching efficiency of the high-fluorine and low-sulfur uranium ore by the consortium adding pyrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abhilash Pandey BD, Singh AK (2013) Comparative performance of uranium bioleaching from low grade indian apatite rock in column and bioreactor. Energy Procedia 39:20–32

    Article  CAS  Google Scholar 

  2. Desouky OA, El-Mougith AA, Hassanien WA, Awadalla GS, Hussien SS (2016) Extraction of some strategic elements from thorium–uranium concentrate using bioproducts of Aspergillus ficuum and Pseudomonas aeruginosa. Arab J Chem 9:S795–S805

    Article  CAS  Google Scholar 

  3. Charalambous FA, Ram R, McMaster S, Tardio J, Bhargava SK (2013) An investigation on the dissolution of synthetic brannerite (UTi2O6). Hydrometallurgy 139:1–8

    Article  CAS  Google Scholar 

  4. Renman R, Jiankang W, Jinghe C (2006) Bacterial heap-leaching: practice in Zijinshan copper mine. Hydrometallurgy 83:77–82

    Article  CAS  Google Scholar 

  5. Fu B, Zhou H, Zhang R, Qiu G (2008) Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum. Int Biodeterior Biodegrad 62:109–115

    Article  CAS  Google Scholar 

  6. Panda S, Sanjay K, Sukla LB, Pradhan N, Subbaiah T, Mishra BK, Prasad MSR, Ray SK (2012) Insights into heap bioleaching of low grade chalcopyrite ores—a pilot scale study. Hydrometallurgy 125–126:157–165

    Article  CAS  Google Scholar 

  7. Wang Z, Zhao Z, Zhang L, Liu F, Peng B, Chai L, Liu D, Liu D, Wang T, Liu H, Liang Y (2019) Formation mechanism of zinc-doped fayalite (Fe2−xZnxSiO4) slag during copper smelting. J Hazard Mater 364:488–498

    Article  CAS  PubMed  Google Scholar 

  8. Kaksonen AH, Mudunuru BM, Hackl R (2014) The role of microorganisms in gold processing and recovery—a review. Hydrometallurgy 142:70–83

    Article  CAS  Google Scholar 

  9. Schippers A, Hedrich S, Vasters J, Drobe M, Sand W, Willscher S (2014) Biomining: metal recovery from ores with microorganisms. In: Schippers A, Glombitza F, Sand W (eds) Geobiotechnology I: metal-related issues. Springer, Berlin, pp 1–47

    Chapter  Google Scholar 

  10. Wang X, Liu Y, Sun Z, Li J, Chai L, Min X, Guo Y, Li P, Zhou Z (2017) Heap bioleaching of uranium from low-grade granite-type ore by mixed acidophilic microbes. J Radioanal Nucl Chem 314:251–258

    Article  CAS  Google Scholar 

  11. Wang X, Li P, Liu Y, Sun Z, Chai L, Min X, Guo Y, Zheng Z, Ke Y, Liang Y (2018) Uranium bioleaching from low-grade carbonaceous-siliceous-argillaceous type uranium ore using an indigenous Acidithiobacillus ferrooxidans. J Radioanal Nucl Chem 317:1033–1040

    Article  CAS  Google Scholar 

  12. Umanskii AB, Klyushnikov AM (2013) Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidans and A. thiooxidans. J Radioanal Nucl Chem 295:151–156

    Article  CAS  Google Scholar 

  13. Rashidi A, Roosta-Azad R, Safdari SJ (2014) Optimization of operating parameters and rate of uranium bioleaching from a low-grade ore. J Radioanal Nucl Chem 301:341–350

    Article  CAS  Google Scholar 

  14. Li Q, Sun J, Hu E, Ding D, Wang X, Wang Q, Jiang X, Shi W (2017) Characterization and uranium bioleaching performance of mixed iron- and sulfur-oxidizers versus iron-oxidizers. J Radioanal Nucl Chem 314:1939–1946

    Article  CAS  Google Scholar 

  15. Qiu G, Li Q, Yu R, Sun Z, Liu Y, Chen M, Yin H, Zhang Y, Liang Y, Xu L, Sun L, Liu X (2011) Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium. Biores Technol 102:4697–4702

    Article  CAS  Google Scholar 

  16. Ghasemi Torkabad M, Keshtkar AR, Safdari SJ (2018) Selective concentration of uranium from bioleach liquor of low-grade uranium ore by nanofiltration process. Hydrometallurgy 178:106–115

    Article  CAS  Google Scholar 

  17. de Souza AD, Pina PS, Leão VA (2007) Bioleaching and chemical leaching as an integrated process in the zinc industry. Miner Eng 20:591–599

    Article  CAS  Google Scholar 

  18. Ke Y, Peng N, Xue K, Min X, Chai L, Pan Q, Liang Y, Xiao R, Wang Y, Tang C, Liu H (2018) Sulfidation behavior and mechanism of zinc silicate roasted with pyrite. Appl Surf Sci 435:1011–1019

    Article  CAS  Google Scholar 

  19. Gan M, Jie S, Li M, Zhu J, Liu X (2015) Bioleaching of multiple metals from contaminated sediment by moderate thermophiles. Mar Pollut Bull 97:47–55

    Article  CAS  PubMed  Google Scholar 

  20. Gan M, Zhou S, Li M, Zhu J, Liu X, Chai L (2015) Bioleaching of multiple heavy metals from contaminated sediment by mesophile consortium. Environ Sci Pollut Res 22:5807–5816

    Article  CAS  Google Scholar 

  21. Rozas EE, Mendes MA, Nascimento CAO, Espinosa DCR, Oliveira R, Oliveira G, Custodio MR (2017) Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera). J Hazard Mater 329:120–130

    Article  CAS  PubMed  Google Scholar 

  22. Bryan CG, Watkin EL, McCredden TJ, Wong ZR, Harrison STL, Kaksonen AH (2015) The use of pyrite as a source of lixiviant in the bioleaching of electronic waste. Hydrometallurgy 152:33–43

    Article  CAS  Google Scholar 

  23. Muñoz JA, Ballester A, González F, Blázquez ML (1995) A study of the bioleaching of a Spanish uranium ore. Part II: orbital shaker experiments. Hydrometallurgy 38:59–78

    Article  Google Scholar 

  24. Umanskii AB, Klyushnikov AM (2012) Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidans and A. thiooxidans. J Radioanal Nucl Chem 295:151–156

    Article  CAS  Google Scholar 

  25. Wang XG, Zheng ZH, Sun ZX, Liu YJ (2012) Recovery of uranium from uranium-bearing waste ore using heap bioleaching. Adv Mater Res 518–523:3187–3190

    Article  CAS  Google Scholar 

  26. He Z, Yang Y, Zhou S, Hu Y, Zhong H (2014) Effect of pyrite, elemental sulfur and ferrous ions on EPS production by metal sulfide bioleaching microbes. Trans Nonferrous Metals Soc China 24:1171–1178

    Article  CAS  Google Scholar 

  27. Liu Y, Li J, Chen G, Xu L, Xu W, Sun Z, Liu J (2016) Uranium column bioleaching from high fluorite and low sulfur-bearing uranium ore with additional pyrite. Nonferrous Metals (Extr Metall) 4:37–40

    Google Scholar 

  28. Carrasco H, Gasós P, Merino LK (1967) Factores que afectan a la lixiviacion de1 uranio con agua de minerals de pechblenday sulfuros. Informe JEN R, Madrid 2:1

    Google Scholar 

  29. Miller RP, Napier E, Wells RA (1963) Natural leaching of uranium ores—discussions and contributions. Trans Inst Min Metall 72:217–254

    Google Scholar 

  30. Bonnetti C, Liu X, Mercadier J, Cuney M, Deloule E, Villeneuve J, Liu W (2018) The genesis of granite-related hydrothermal uranium deposits in the Xiazhuang and Zhuguang ore fields, North Guangdong Province, SE China: insights from mineralogical, trace elements and U-Pb isotopes signatures of the U mineralisation. Ore Geol Rev 92:588–612

    Article  Google Scholar 

  31. Zhu S, Wang Q, Liu S, Yang S (2009) Study on uranium defluoridation process of high fluoride uranium ore. China Min Mag 18:74–77

    CAS  Google Scholar 

  32. Zhou Z, Sun Z, Gao F, Gao B (2012) Experiment of bioleaching of uranium ore under different acidities. Nonferrous Metals (Extr Metall) 11:52–55

    Google Scholar 

  33. Chen G, Wang G, Shi W, Liu J (2010) Bioleaching effect of a uranium deposit under different agitating reactors. Metalmine 410:79–81

    Google Scholar 

  34. Wang X, Sun Z, Liu Y, Min X, Guo Y, Li P, Zheng Z (2019) Effect of particle size on uranium bioleaching in column reactors from a low-grade uranium ore. Biores Technol 281:66–71

    Article  CAS  Google Scholar 

  35. Ma L, Wang X, Tao J, Feng X, Liu X, Qin W (2017) Differential fluoride tolerance between sulfur- and ferrous iron-grown Acidithiobacillus ferrooxidans and its mechanism analysis. Biochem Eng J 119:59–66

    Article  CAS  Google Scholar 

  36. Yu R, Zhong D, Miao L, Wu F, Qiu G, Gu G (2011) Relationship and effect of redox potential, jarosites and extracellular polymeric substances in bioleaching chalcopyrite by Acidithiobacillus ferrooxidans. Trans Nonferrous Metals Soc China 21:1634–1640

    Article  CAS  Google Scholar 

  37. Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604

    Article  CAS  Google Scholar 

  38. Muñoz JA, González F, Blázquez ML, Ballester A (1995) A study of the bioleaching of a Spanish uranium ore. Part I: a review of the bacterial leaching in the treatment of uranium ores. Hydrometallurgy 38:39–57

    Article  Google Scholar 

  39. Peng Z, Yu R, Qiu G, Qin W, Gu G, Wang Q, Li Q, Liu X (2013) Really active form of fluorine toxicity affecting Acidithiobacillus ferrooxidans activity in bioleaching uranium. Trans Nonferrous Metals Soc China 23:812–817

    Article  CAS  Google Scholar 

  40. Liu Y, Liu J, Li J, Sun Z, Xu L, Xu W, Chen G, Wang X (2016) Comparison of microbial diversity in acid heap leaching and bio-heap-leaching with fluoride-bearing uranium ores. Nonferrous Metals (Extr Metall) 3:26–31

    Google Scholar 

  41. Li M, Zhang X, Liu Z, Hu Y, Wang M, Liu J, Yang J (2013) Kinetics of leaching fluoride from mixed rare earth concentrate with hydrochloric acid and aluminum chloride. Hydrometallurgy 140:71–76

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (No. 2012AA061504) and National Natural Science Foundation of China (No. 41772266, 41662015, 41662024 and U1501231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Yang, Z., Sun, Z. et al. Enhanced uranium bioleaching high-fluorine and low-sulfur uranium ore by a mesophilic acidophilic bacterial consortium with pyrite. J Radioanal Nucl Chem 321, 711–722 (2019). https://doi.org/10.1007/s10967-019-06608-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06608-4

Keywords

Navigation