Skip to main content
Log in

Heterogeneous distribution of radiocesium in aerosols, soil and particulate matters emitted by the Fukushima Daiichi Nuclear Power Plant accident: retention of micro-scale heterogeneity during the migration of radiocesium from the air into ground and river systems

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

We analyzed 137Cs in aerosols, rock, soil and river suspended sediment collected after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Based on the results, we discuss the post-event behavior and transportation of radiocesium in the environment from the air into ground and river systems. First, radionuclides were emitted from the FDNPP as airborne ‘hot’ particles, which contained water-soluble fractions of radiocesium. Radiocesium was still present in a water-soluble fraction after deposition on the ground. Subsequent interaction of the ‘hot’ particles with water (e.g. rainfall) dissolved and strongly fixed the radiocesium on rock and soil particles, thus changing the radiocesium into insoluble forms. The distribution of ‘hot spots’ was possibly controlled by the initial position of deposition on the ground. Consequently, ‘hot spots’ were studded on the rock surface rather than being uniformly distributed. The distribution of radiocesium in river suspended particles was not homogeneous during water transportation, reflecting the heterogeneity of radiocesium in rock and soil. Leaching experiments demonstrated that radiocesium in rock, soil and river suspended sediment was fairly insoluble, showing that the adsorption reaction is irreversible. The micro-scale heterogeneous distribution of radiocesium in aerosols, soil and suspended particles was due to the presence of ‘hot’ particles in aerosols. Dissolution of radiocesium in the ‘hot’ particles in the aerosols and subsequent irreversible adsorption onto the soil particle complex are responsible for the preservation of the heterogeneity both in soil and in river suspended particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nuclear Emergency Response Headquarters Government of Japan (2011) http://www.kantei.go.jp/foreign/kan/topics/201106/iaea_houkokusho_e.html. Accessed 6 July 2012

  2. Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) J Nucl Sci Technol 48:1129–1134

    Article  CAS  Google Scholar 

  3. Endo S, Kimura S, Takatsuji T, Nanasawa K, Imanaka T, Shizuma K (2012) J Environ Radioact 111:18–27

    Article  CAS  Google Scholar 

  4. Cardis E, Kesminiene A, Ivanov V, Malakhova I, Shibata Y, Khrouch V et al (2005) J Natl Cancer Inst 97:724–732

    Article  Google Scholar 

  5. Kato H, Onda Y, Teramage M (2012) J Environ Radioact 111:59–64

    Article  CAS  Google Scholar 

  6. Ohno T, Muramatsu Y, Miura Y, Oda K, Inagawa N, Ogawa H, Yamazaki A, Toyama C, Sato M (2012) Geochem J 46:287–295

    CAS  Google Scholar 

  7. Tanaka K, Takahashi Y, Sakaguchi A, Umeo M, Hayakawa S, Tanida H, Saito T, Kanai Y (2012) Geochem J 46:73–76

    CAS  Google Scholar 

  8. Santschi PH, Bollhalder S, Farrenkothen K, Lueck A, Zlngg S, Sturm M (1988) Environ Sci Technol 22:510–516

    Article  CAS  Google Scholar 

  9. Owens PN, Walling DE (1996) Appl Radiat Isot 47:699–707

    Article  CAS  Google Scholar 

  10. Sutherland RA (1996) Hydrol Process 10:43–53

    Article  Google Scholar 

  11. Kaste JM, Heimasath AM, Hohmann M (2006) Geomorphology 76:430–440

    Article  Google Scholar 

  12. Schaub M, Konz N, Meusburger K, Alewell C (2010) J Environ Radioact 101:369–376

    Article  CAS  Google Scholar 

  13. Phillips JM, Russell MA, Walling DE (2000) Hydrol Process 14:2589–2602

    Article  Google Scholar 

  14. Evans DW, Alberts JJ, Clark RA III (1983) Geochim Cosmochim Acta 47:1041–1049

    Article  CAS  Google Scholar 

  15. Vidal M, Roig M, Rigol A, Llauradό M, Rauret G, Wauters J, Elsen A, Cremers A (1995) Analyst 120:1785–1791

    Article  CAS  Google Scholar 

  16. Kanai Y (2012) J Environ Radioact 111:33–37

    Article  CAS  Google Scholar 

  17. Bostick BC, Vairavamurthy MA, Karthikeyan KG, Chorover J (2002) Environ Sci Technol 36:2670–2676

    Article  CAS  Google Scholar 

  18. Qin H, Yokoyama Y, Fan Q, Iwatani H, Tanaka K, Sakaguchi A, Kanai Y, Zhu J, Takahashi Y (2012) Geochem J 46:297–302

    CAS  Google Scholar 

  19. Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) (2011) http://radioactivity.mext.go.jp/en/. Accessed 6 July 2012

  20. Kinoshita N, Sueki K, Sasa K, Kitagawa J, Ikarashi S, Nishimura T, Wong Y, Satou Y, Handa K, Takahashi T, Sato M, Yamagata T (2011) PNAS 108:19526–19529

    Article  CAS  Google Scholar 

  21. Sandalls FJ, Segal MG, Victorova N (1993) J Environ Radioact 18:5–22

    Article  CAS  Google Scholar 

  22. Yoschenko VI, Kashparov VA, Protsak VP, Tschiersch J (2003) Appl Radiat Isot 58:95–102

    Article  CAS  Google Scholar 

  23. Bondietti EA, Brantley JN, Rangarajan C (1988) J Environ Radioact 6:99–120

    Article  CAS  Google Scholar 

  24. Hilton J, Cambray RS, Green N (1992) J Environ Radioact 15:103–111

    Article  CAS  Google Scholar 

  25. Tomášek M, Rybáček K, Wilhemová L (1995) J Radioanal Nucl Chem 201:409–416

    Article  Google Scholar 

  26. Jost DT, Gaggeler HW, Baltensperger U, Zinder B, Haller P (1986) Nature 324:22–23

    Article  CAS  Google Scholar 

  27. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, New York

    Google Scholar 

  28. Hsu CN, Wei YY, Chuang JT, Tseng CL, Yang JY, Ke CH, Cheng HP, Teng SP (2002) Radiochim Acta 90:659–664

    Article  CAS  Google Scholar 

  29. Lee CP, Lan PL, Jan YL, Wei YY, Teng SP, Hsu CN (2006) Radiochim Acta 94:679–682

    Article  CAS  Google Scholar 

  30. He Q, Walling DE (1996) J Environ Radioact 30:117–137

    Article  CAS  Google Scholar 

  31. Cremers A, Elsen A, De Preter P, Maes A (1988) Nature 335:247–249

    Article  CAS  Google Scholar 

  32. Mckinley JP, Zeissler CJ, Zachara JM, Serne RJ, Lindstrom RM, Schaef HT, Orr RD (2001) Environ Sci Technol 35:3433–3441

    Article  CAS  Google Scholar 

  33. Yoshida N, Takahashi Y (2012) Elements 8:201–206

    Article  CAS  Google Scholar 

  34. O’Day PA, Rehr JJ, Zabinsky SI, Brown GE (1994) J Am Chem Soc 116:2938–2949

    Article  Google Scholar 

  35. Sakaguchi A, Chiga H, Iwatani H, Tanaka K, Takahashi Y (in preparation)

Download references

Acknowledgments

The authors thank Y. Watanabe, A. Kadokura and M. Fujiwara for their help in the experiments. The aerosol filter samples were kindly provided by Kawasaki Municipal Research Institute for Environmental Protection. The EXAFS measurement has been performed with approvals of KEK (Proposal No. 2011G644 and 2011G197) and JASRI (Proposal No. 2011B1569). This work has been done in the FMWSE project (Fukushima Radiation Monitoring of Water, Soil and Entrainment) supported by MEXT (Ministry of Education, Culture, Sports, Science & Technology in Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Sakaguchi, A., Kanai, Y. et al. Heterogeneous distribution of radiocesium in aerosols, soil and particulate matters emitted by the Fukushima Daiichi Nuclear Power Plant accident: retention of micro-scale heterogeneity during the migration of radiocesium from the air into ground and river systems. J Radioanal Nucl Chem 295, 1927–1937 (2013). https://doi.org/10.1007/s10967-012-2160-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2160-9

Keywords

Navigation