Skip to main content
Log in

Evaluation of stray neutron distribution in medical cyclotron vault room by neutron activation analysis approach

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Stray neutron distribution in a medical cyclotron vault room was evaluated by neutron activation analysis (NAA). Neutrons were generated in the production of radioactive nuclides, such as 18F, 11C, 13N and 15O, for diagnostic usage. Indium foil was adopted to evaluate the stray fast and thermal neutron intensity based on 115In(nf, n′)115mIn and 115In(nth, γ)116m1In reactions, respectively. The indium foils were weighed, sealed and placed at 62 points around the 6.7×8.2 m2 cyclotron room. Additionally, each indium foil was exposed for over 80 minutes during cyclotron operation and γ-peaks were analyzed using an HPGe detector to evaluate the number of stray fast (Φ f) or thermal (Φ th) neutrons. The minimum to maximum numbers of fast and thermal neutrons were (3.47±0.11)×103 to (1.06±0.21)×104 n·cm−2·s−1 and 9 to 965 n·cm−2·s−1, respectively. The minimum detectable limit for stray neutrons was included herein to demonstrate the reliability. Accordingly, 60 and two points, respectively, the confidence level associated with the reported intensities of fast and thermal neutrons reached 95%. The low qualified ratio in the evaluation of stray thermal neutrons might have been caused by either the high Compton scattering plateau or the low intensity of the gamma-ray peak in the relevant spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. O’donnell, L. L. Vintro, G. J. Duffy, et al., Appl. Radiat. Isotopes, 60 (2004) 539.

    Article  CAS  Google Scholar 

  2. C. Birattari, M. C. Cantone, A. Ferrari, et al., Nucl. Instr. Methods, B43 (1989) 119.

    CAS  Google Scholar 

  3. M. Silari, Radiat. Prot. Dosim., 96[4] (2001) 381.

    CAS  Google Scholar 

  4. K. Kondo, H. Hirayama, S. Ban, et al., Health Phys., 46[6] (1984) 1221.

    Article  CAS  Google Scholar 

  5. B. Mukherjee, A. Barber, Appl. Radiat. Isotopes, 46(12) (1995) 1333.

    Article  CAS  Google Scholar 

  6. B. Mukherjee, J. Radioanal. Nucl. Chem., 231 (1998) 179.

    Article  CAS  Google Scholar 

  7. I. Tilquin, P. Fromrnt, M. Cogneau, et al., Nucl. Instr. Meth. A545 (2005) 339.

    Google Scholar 

  8. H. R. Vega-Carrillo, Nucl. Instr. Methods, A463 (2001) 375.

    Google Scholar 

  9. L. K. Pan, Nucl. Tech., 89 (1990) 116.

    CAS  Google Scholar 

  10. C. Y. CHEN, Y. Y. WEI, S. P. CHANGLAI, et al., J. Radioanal. Nucl. Chem., 257 (2003) 405.

    Article  CAS  Google Scholar 

  11. Chung Shan Medical University Hospital, Environmental radiation report, Taichung Taiwan, Republic of China, 2007.

  12. International Commission on Radiological Protection, Recommendation of the ICRP, ICRP Publication 60, Annals of the ICRP, 21. No. 1–3, Pergamon Press, Oxford, UK, 1991.

    Google Scholar 

  13. CTI, Radioisotope delivery system RDS-111. Technical description, Knoxville, T. N. USA, 1995.

  14. J. H. Chao, W. S. Liu, C. Y. Chen, Radiat. Meas., 42 (2007) 1538.

    Article  CAS  Google Scholar 

  15. S. S. Hanna, C. J. Martoff, D. Pocanic, et al., Nucl. Instr. Methods, A401 (1997) 345.

    Google Scholar 

  16. American Association of Physicists in Medicine (AAPM), Neutron measurements around high energy X-ray radiotherapy machine, AAPM No.19, New York, 1986.

  17. C. Konno, F. Maekawa, Y. Oyama, et al., Fusion Eng. Des., 28 (1995) 745.

    CAS  Google Scholar 

  18. V. S. Shieley, C. M. Lederer, Table of Isotopes, Wiley-Interscience Publishing, New York, 1978.

    Google Scholar 

  19. R. B. Sharma, C. M. Culver, J. Radioanal. Nucl. Chem., 183 (1994) 329.

    Article  CAS  Google Scholar 

  20. J. H. Chao, P. C. Hsu, H. M. Liu, Appl. Radiat. Isotopes, 55 (2001) 549.

    Article  CAS  Google Scholar 

  21. O. Z. Assatel, N. M. Spyrou, J. Radioanal. Nucl. Chem., 217 (1997) 255.

    Article  CAS  Google Scholar 

  22. L. K. Pan, Nucl. Tech., 124 (1998) 276.

    CAS  Google Scholar 

  23. C. Chung, L. J. Yuan, K. B. Chen, Nucl. Instr. Methods, A243 (1986) 102.

    CAS  Google Scholar 

  24. C. Chumg, C. J. Lee, Nucl. Instr. Methods, A273 (1988) 436.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Yi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, JB., Lee, JP., Lin, DB. et al. Evaluation of stray neutron distribution in medical cyclotron vault room by neutron activation analysis approach. J Radioanal Nucl Chem 280, 481–487 (2009). https://doi.org/10.1007/s10967-009-7461-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-009-7461-2

Keywords

Navigation