Skip to main content
Log in

Navier-Stokes approximation and problems of the Chapman-Enskog projection for kinetic equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The purpose of this paper is to investigate problems of the Navier-Stokes approximation to kinetic equations in terms of the so-called Chapman-Enskog projection. One considers properties of the Chapman-Enskog projection for the Cauchy problem for moment approximations of the kinetic equation and primarily the Chapman-Enskog projection for the Boltzmann-Peierls kinetic equation. The existence of the Chapman-Enskog projection for the Cauchy problem is proved for the phase space of conservative variables (phenomena of nonlinear diffusion) and for the phase space of physical variables (the second sound projection).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Müller and T. Ruggeri, Extended Thermodynamics, Springer (1993).

  2. C. D. Levermore, “Moment closure hierarchies for kinetic theories,” J. Statist. Phys., 83, 1021–1065 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Chapman and T. Cowling, Mathematical Theory on Non-Uniform Gases, Cambridge Univ. Press, Cambridge (1970).

    Google Scholar 

  4. R. Peierls, “Zur kinetischen Theorie der Warmeleitung in Kristallen,” Ann. Physics, 3, 1055 (1929).

    MATH  Google Scholar 

  5. R. A. Guver and J. A. Krumhansl, “Solution of the linearized phonon Boltzmann equation,” Phys. Rev., 148, No. 2, 766–778 (1966).

    Google Scholar 

  6. J. Ranniger, “Heat-pulse propagation in ionic lattices,” Phys. Rev. B, 5, No. 8, 3315–3321 (1972).

    Google Scholar 

  7. T. Dedeurwaerder, J. Cases-Vazquez, D. Jou, and G. Lebon, “Foundations and applications of a mesoscopic thermodynamic theory of fast phenomena,” Phys. Rev. E, 53, No. 1, 498–506 (1996).

    Google Scholar 

  8. V. Narayanamurti, R. Dynes, and K. Anders, “Propagation of sound and second sound using heat pulses,” Phys. Rev. B, 11, No. 7, 2500–2524 (1975).

    Article  Google Scholar 

  9. W. Dreyer and H. Struchtrup, “Heat pulse experiments revisited,” Contin. Mech. Thermodyn., 5, 3–50 (1993).

    MathSciNet  Google Scholar 

  10. W. Dreyer, M. Herrmann, M. Kunik, and Sh. Qamar, Kinetic Schemes for Selected Initial and Boundary Value Problems, Preprint No. ISSN 0946-8633, Weierstrass-Institute fur Angewandte Analysis und Stochastik (2003).

  11. E. V. Radkevich, “Well-posedness of mathematical models in continuum mechanics and thermodynamics,” Itogi Nauki i Tekhn., Sovr. Probl. Mat., Fundam. Napr., 3, 5–32 (2003).

    Google Scholar 

  12. L. R. Volevich and E. V. Radkevich, “Uniform estimates for Cauchy problem solutions of hyperbolic equations with highest derivatives multiplied by small parameter,” Differ. Uravn., 39, No. 4, 1–14 (2003).

    MathSciNet  Google Scholar 

  13. P. A. Zakharchenko and E. V. Radkevich, “On the properties of representation of the Fokker-Planck equation in a Hermite function basis,” Dokl. Ross. Akad. Nauk, 395, No. 1, 36–39 (2004).

    MathSciNet  Google Scholar 

  14. F. Brini, “Hyperbolicity region in extended thermodynamics with 14 moments,” Contin. Mech. Thermodyn., 13, 1–8 (2001).

    MATH  Google Scholar 

  15. I. Edelman, “Bifurcation of the Biot slow wave in a porous medium,” J. Acoust. Soc. Amer., 114, No. 1, 1–7 (2003).

    Article  Google Scholar 

  16. I. V. Karlin and A. N. Gorban, “Hydrodynamics from Grad’s equations: What can we learn from exact solution?” Ann. Phys., 11, 783–833 (2002).

    Article  MathSciNet  Google Scholar 

  17. A. V. Bobylev, Stat. Phys., 80, 1063 (1982).

    MathSciNet  Google Scholar 

  18. H. Struchtrup and W. Weiss, “Temperature jump and velocity slip in the moment method,” Contin. Mech. Thermodyn., 12, 1–18 (2000).

    MathSciNet  Google Scholar 

  19. W. Dreyer, M. Junk, and M. Kunik, “On the approximation of the Fokker-Planck equation by moments system,” Nonlinearity, 14, 881–906 (2001).

    Article  MathSciNet  Google Scholar 

  20. L. R. Volevich and E. V. Radkevich, “Stable pencils of hyperbolic polynomials of the Cauchy problem for hyperbolic equations with small parameter. Applications,” Tr. Mosk. Mat. Obshch., 65, 69–113 (2004).

    MathSciNet  Google Scholar 

  21. P. A. Zakharchenko and E. V. Radkevich, “Central manifold and problems of the Chapman-Enskog projection for the Boltzmann-Peierls equation,” Dokl. Ross. Akad. Nauk, 397, No. 6, 762–766 (2004).

    MathSciNet  Google Scholar 

  22. C. Cerecignani, Boltzmann Equation and Its Applications, Springer (1988).

  23. J. Glimm and A. Jaffe, Quantum Physics: A Functional Integral Point of View, Springer, New York (1981).

    Google Scholar 

  24. G. Parisi, Statistical Field Theory, Addison-Wesley, Reading, PA (1988).

    Google Scholar 

Download references

Authors

Additional information

__________

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 25, pp. 184–225, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palin, V.V., Radkevich, E.V. Navier-Stokes approximation and problems of the Chapman-Enskog projection for kinetic equations. J Math Sci 135, 2721–2748 (2006). https://doi.org/10.1007/s10958-006-0140-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-006-0140-8

Keywords

Navigation