Skip to main content
Log in

Bridge Decomposition of Restriction Measures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Motivated by Kesten’s bridge decomposition for two-dimensional self-avoiding walks in the upper half plane, we show that the conjectured scaling limit of the half-plane SAW, the SLE(8/3) process, also has an appropriately defined bridge decomposition. This continuum decomposition turns out to entirely be a consequence of the restriction property of SLE(8/3), and as a result can be generalized to the wider class of restriction measures. Specifically we show that the restriction hulls with index less than one can be decomposed into a Poisson Point Process of irreducible bridges in a way that is similar to Itô’s excursion decomposition of a Brownian motion according to its zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts, T., Sheffield, S.: Hausdorff dimension of the sle curve intersected with the real line. Electron. J. Probab. 13, 1166–1188 (2008). (electronic) URL http://www.math.washington.edu/~ejpecp/

    MATH  MathSciNet  Google Scholar 

  2. Beffara, V.: The dimension of the SLE curves. Ann. Probab. 36(4), 1421–1452 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertoin, J.: Subordinators: examples and applications. In: Lectures on probability theory and statistics (Saint-Flour, 1997). Lecture Notes in Math., vol. 1717, pp. 1–91. Springer, Berlin (1999)

    Google Scholar 

  4. Dubédat, J.: Excursion decompositions for SLE and Watts’ crossing formula. Probab. Theory Related Fields 134(3), 453–488 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kennedy, T.: A fast algorithm for simulating the chordal Schramm-Loewner evolution. J. Stat. Phys. 128(5), 1125–1137 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Kesten, H.: On the number of self-avoiding walks. J. Math. Phys. 4, 960–969 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Kesten, H.: On the number of self-avoiding walks. II. J. Math. Phys. 5, 1128–1137 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Lawler, G., Schramm, O., Werner, W.: Conformal restriction: the chordal case. J. Am. Math. Soc. 16(4), 917–955 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lawler, G.F.: Hausdorff dimension of cut points for Brownian motion. Electron. J. Probab. 1(2), (1996) approx. 20 pp. (electronic)

  10. Lawler, G.F.: Conformally invariant processes in the plane. Mathematical Surveys and Monographs, vol. 114. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  11. Lawler, G.F., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walk. In: Fractal Geometry and Applications: a Jubilee of Benoît Mandelbrot, Part 2. Proc. Sympos. Pure Math., vol. 72, pp. 339–364. Amer. Math. Soc., Providence (2004)

    Google Scholar 

  12. Lawler, G.F., Sheffield, S.: Construction of the natural parameterization for SLE curves. (2009). arXiv:0906.3804v1 [math.PR]

  13. Lawler, G.F., Werner, W.: The Brownian loop soup. Probab. Theory Related Fields 128(4), 565–588 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Madras, N., Slade, G.: The Self-Avoiding Walk. Probability and Its Applications. Birkhäuser, Boston (1993)

    Google Scholar 

  15. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 3rd edn. Springer, Berlin (1999)

    MATH  Google Scholar 

  16. Schramm, O., Zhou, W.: Boundary proximity of SLE (2007). arXiv:0711.3350v2 [math.PR]

  17. Virág, B.: Brownian beads. Probab. Theory Related Fields 127(3), 367–387 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Alberts.

Additional information

Research of Tom Alberts supported in part by NSF Grant OISE 0730136, and a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada. Research of Hugo Duminil-Copin supported in part by project MRTN-CT-2006-035651, Acronym CODY, of the European Commission, and a grant from the Swiss National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberts, T., Duminil-Copin, H. Bridge Decomposition of Restriction Measures. J Stat Phys 140, 467–493 (2010). https://doi.org/10.1007/s10955-010-9999-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-9999-3

Keywords

Navigation