Skip to main content
Log in

Cooling Process for Inelastic Boltzmann Equations for Hard Spheres, Part II: Self-Similar Solutions and Tail Behavior

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the spatially homogeneous Boltzmann equation for inelastic hard spheres, in the framework of so-called constant normal restitution coefficients. We prove the existence of self-similar solutions, and we give pointwise estimates on their tail. We also give general estimates on the tail and the regularity of generic solutions. In particular we prove Haff's law on the rate of decay of temperature, as well as the algebraic decay of singularities. The proofs are based on the regularity study of a rescaled problem, with the help of the regularity properties of the gain part of the Boltzmann collision integral, well-known in the elastic case, and which are extended here in the context of granular gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. F. Abrahamsson, Strong L 1 convergence to equilibrium without entropy conditions for the Boltzmann equation, Comm. Partial Differential Equations 24:1501–1535 (1999).

    MATH  MathSciNet  Google Scholar 

  2. R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg, Entropy dissipation and long range interactions, Arch. Ration. Mech. Anal. 152:327–355 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Balabane, Équations différentielles, cours de l'École des Ponts et Chaussées (1985).

  4. D. Benedetto, E. Caglioti, and M. Pulvirenti, A kinetic equation for granular media, Math. Mod. Numér. Anal. 31:615–641 (1997).

    MATH  MathSciNet  Google Scholar 

  5. A. V. Bobylev, Moment inequalities for the Boltzmann equation and applications to the spatially homogeneous problems, J. Statist. Phys. 88:1183–1214 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  6. A. V. Bobylev, J. A. Carillo, and I. Gamba, On some properties of kinetic and hydrodynamics equations for inelastic interactions, J. Statist. Phys. 98:743–773 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. V. Bobylev and C. Cercignani, Self-Similar asymptotics for the Boltzmann equation with Inelastic and elastic interactions, J. Statist. Phys. 110:333–375 (2003).

    Google Scholar 

  8. A. V. Bobylev, C. Cercignani, and G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, J. Statist. Phys. 111:403–417 (2003).

    Google Scholar 

  9. A. V. Bobylev, I. Gamba, and V. Panferov, Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions, J. Statist. Phys. 116:1651–1682 (2004).

    Article  MathSciNet  Google Scholar 

  10. F. Bouchut and L. Desvillettes, A proof of smoothing properties of the positive part of Boltzmann's kernel, Rev. Mat. Iberoamericana 14:47–61 (1998).

    MATH  MathSciNet  Google Scholar 

  11. N. V. Brilliantov and T. Pöeschel, Kinetic Theory of Granular Gases (Oxford Graduate Texts. Oxford University Press, Oxford, 2004).

    Google Scholar 

  12. E. Caglioti and C. Villani, Homogeneous Cooling States are not always good approximations to granular flows, Arch. Ration. Mech. Anal. 163:329–343 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Carleman, Sur la théorie de l'équation intégrodifférentielle de Boltzmann, Acta Math. 60 91–146 (1932).

    Google Scholar 

  14. C. Cercignani, Recent developments in the mechanics of granular materials, in Fisica matematica e ingegneria delle strutture (Pitagora Editrice, Bologna, 1995), pp. 119–132.

  15. L. Desvillettes and C. Mouhot, About L p estimates for the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 22:127–142 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  16. M. H. Ernst and R. Brito, Driven inelastic Maxwell molecules with high energy tails, Phys. Rev. E 65:1–4 (2002).

    Article  Google Scholar 

  17. M. H. Ernst and R. Brito, Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails, J. Statist. Phys. 109:407–432 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Escobedo, S. Mischler, and M. Rodriguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non Linéaire 22:99–125 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  19. I. Gamba, V. Panferov, and C. Villani, On the Boltzmann equation for diffusively excited granular media, Comm. Math. Phys. 246:503–541 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. I. Gamba, V. Panferov, and C. Villani Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation. Work in progress.

  21. T. Gustafsson, L p-estimates for the nonlinear spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal. 92:23–57 (1986).

    Google Scholar 

  22. T. Gustafsson, Global L p-properties for the spatially homogeneous Boltzmann equation, Arch. Ration. Mech. Anal. 103:1–38 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  23. H. Grad, Asymptotic theory of the Boltzmann equation. II Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962), Vol. I, pp 26–59, New York, 1963.

  24. P. K. Haff, Grain flow as a fluid-mechanical phenomenon, J. Fluid Mech. 134 (1983).

  25. H. Li and G. Toscani, Long-time asymptotics of kinetic models of granular flows, Arch. Ration. Mech. Anal. 172:407–428 (2004).

    Google Scholar 

  26. P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications I, II, III, J. Math. Kyoto Univ. 34:391–427, 429–461, 539–584 (1994).

    Google Scholar 

  27. X. Lu, A direct method for the regularity of the gain term in the Boltzmann equation, J. Math. Anal. Appl. 228 (1998), 409–435.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Mischler, C. Mouhot, and M. Rodriguez Ricard, Cooling process for inelastic Boltzmann equations for hard spheres, Part I: The Cauchy problem, to appear in J. Statist. Phys.

  29. S. Mischler and C. Mouhot, Convergence to self-similarity for a Boltzmann equation of dissipative hard spheres with small inelasticity work in progress

  30. S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 16:467–501 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  31. C. Mouhot, Quantitative lower bound for the full Boltzmann equation, Part I: Periodic boundary conditions, Comm. Partial Differential Equations 30:881–917 (2005).

    MATH  MathSciNet  Google Scholar 

  32. C. Mouhot and C. Villani, Regularity theory for the spatially homogeneous Boltzmann equation with cut-off, Arch. Ration. Mech. Anal. 173 (2004), 169–212.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Pulvirenti and B. Wennberg, A Maxwellian lower bound for solutions to the Boltzmann equation, Comm. Math. Phys. 183:145–160 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. C. Villani, A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics, Vol. I, 71–305 (North-Holland, Amsterdam, 2002).

    Google Scholar 

  35. B. Wennberg, Regularity in the Boltzmann equation and the Radon transform, Comm. Partial Differential Equations 19:2057–2074 (1994).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mischler.

Additional information

Mathematics Subject Classification (2000): 76P05 Rarefied gas flows, Boltzmann equation [See also 82B40, 82C40, 82D05].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mischler, S., Mouhot, C. Cooling Process for Inelastic Boltzmann Equations for Hard Spheres, Part II: Self-Similar Solutions and Tail Behavior. J Stat Phys 124, 703–746 (2006). https://doi.org/10.1007/s10955-006-9097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9097-8

Key Words

Navigation