Skip to main content
Log in

Fate of Biodegradable Polymers Under Industrial Conditions for Anaerobic Digestion and Aerobic Composting of Food Waste

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biodegradable polymers were introduced in the past decades in order to address the issue of plastic pollutions, and these materials have thus required the development of methodologies to understand and evaluate their disintegration. The aim of this study was to simulate the organic fraction of municipal solid waste (OFMSW) treatment in laboratory-scale and to assess the biodegradation of poly(lactic acid) (PLA) water bottles and starch-based bags under real industrial conditions of anaerobic digestion and aerobic composting. Methane production and loss of mass were determined to estimate the anaerobic degradation; whereas phytotoxicity tests were carried out to provide an evaluation of the compost quality. To visualize the effects on the materials, SEM analyses, differential scanning calorimetry (DSC) and FT-IR/ATR spectroscopy were performed. Different outcomes were found for the tested bioplastics products. PLA bottles didn’t biodegrade under anaerobic conditions and the pieces appeared wrap up at the end, while starch-based bioplastic bags performed 85.79% of disintegration degree. CH4 production was between 40 and 50% for both the products. Phytotoxicity test on the final composts highlighted negative effects on both selected seeds for PLA solutions. Water-soluble lactic acid from degraded PLA bottle significantly reduced the pH of compost affecting seed germination and germination indexes. Both bioplastics showed chemical modification according to DSC and FT-IR/ATR analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. EN ISO 20200:2005 (2005) Plastics. Determination of the degree of disintegration of plastic materials under simulated composting conditions in a laboratory-scale test. European Committee for Standardization, Brussels, Belgium Edition.

  2. UNICHIM. Metodo 1651 – Saggio di germinazione ed allungamento radicale; 2003.

References

  1. Calabrò PS, Grosso M (2018) Bioplastics and waste management. Waste Manag 2019(78):800–801

    Article  Google Scholar 

  2. Luckachan GE, Pillai CKS (2011) Biodegradable polymers—a review on recent trends and emerging perspectives. J Polym Environ 19(3):637–676

    Article  CAS  Google Scholar 

  3. Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536. https://doi.org/10.1016/j.wasman.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  4. Ishigaki T, Sugano W, Nakanishi A, Tateda M, Ike M, Fujita M (2004) The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere 54(3):225–233

    Article  CAS  PubMed  Google Scholar 

  5. Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crops Prod 23(2):147–161

    Article  CAS  Google Scholar 

  6. Hamad K, Kaseem M, Yang HW, Deri F, Ko YG (2015) Properties and medical applications of polylactic acid: a review. Express Polym Lett 9(5):435–455

    Article  CAS  Google Scholar 

  7. Kumar V, Fdez-Güelfo LA, Zhou Y, Álvarez-Gallego CJ, Garcia LIR (June 2017) Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): progress and challenges. Renew Sustain Energy Rev 93(June 2017):380–399

    Google Scholar 

  8. Albanna M (2013) Anaerobic digestion of the organic fraction of municipal solid waste. In: Management of microbial resources in the environment. Springer, Dordrecht, pp 313–340

  9. Bátori V, Åkesson D, Zamani A, Taherzadeh MJ (2018) Anaerobic degradation of bioplastics: a review. Waste Manag 80:406–413

    Article  PubMed  Google Scholar 

  10. Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll X, Peces M, Astals S (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sustain Energy Rev 36:412–427. https://doi.org/10.1016/j.rser.2014.04.039

    Article  CAS  Google Scholar 

  11. Appels L, Lauwers J, Degrve J, Helsen L, Lievens B, Willems K et al (2011) Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev 15(9):4295–4301. https://doi.org/10.1016/j.rser.2011.07.121

    Article  CAS  Google Scholar 

  12. De Baere L (2000) Anaerobic digestion of solid waste: state-of-the-art. Water Sci Technol 41(3):283–290

    Article  PubMed  Google Scholar 

  13. Hartmann H, Møller HB, Ahring BK (2004) Efficiency of the anaerobic treatment of the organic fraction of municipal solid waste: collection and pretreatment. Waste Manag Res 22(1):35–41

    Article  PubMed  Google Scholar 

  14. Rynk R (2002) Perspectives on plastics in compost. Biocycle 43(6):38

    Google Scholar 

  15. Ruggero F, Gori R, Lubello C (2019) Methodologies to assess biodegradation of bioplastics during aerobic composting and anaerobic digestion: a review. Waste Manag Res. https://doi.org/10.1177/0734242X19854127

    Article  PubMed  Google Scholar 

  16. Hobbs SR, Landis AE, Rittmann BE, Young MN, Parameswaran P (2018) Enhancing anaerobic digestion of food waste through biochemical methane potential assays at different substrate: inoculum ratios. Waste Manag 71:612–617. https://doi.org/10.1016/j.wasman.2017.06.029

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Y, Lu Q, Wei Y, Cui H, Zhang X, Wang X et al (2016) Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis. Bioresour Technol 219:196–203. https://doi.org/10.1016/j.biortech.2016.07.117

    Article  CAS  PubMed  Google Scholar 

  18. Sakimoto K, Kanna M, Matsumura Y (2017) Kinetic model of cellulose degradation using simultaneous saccharification and fermentation. Biomass Bioenergy 99:116–121. https://doi.org/10.1016/j.biombioe.2017.02.016

    Article  CAS  Google Scholar 

  19. ANPA ONR (2002) Il recupero di sostanza organica dai rifiuti per la produzione di ammendanti di qualità. Manuali e Linee Guid 7

  20. Vaverková M, Toman F, Adamcová D, Kotovicová J (2012) Study of the biodegradability of degradable/biodegradable plastic material in a controlled composting environment. Ecol Chem Eng S 19(3):347–358

    Google Scholar 

  21. Javierre C, Sarasa J, Claveria I, Fernández A (2015) Study of the biodisintegration on a painted bioplastic material waste. Mater Plast 52(1):116–121

    Google Scholar 

  22. Gopalan HNB (1999) Ecosystem health and human well being: the mission of the international programme on plant bioassays. Mutat Res Fundam Mol Mech Mutagen 426(2):99–102

    Article  CAS  Google Scholar 

  23. Valerio ME, García JF, Peinado FM (2007) Determination of phytotoxicity of soluble elements in soils, based on a bioassay with lettuce (Lactuca sativa L.). Sci Total Environ 378(1–2):63–66

    Article  CAS  PubMed  Google Scholar 

  24. Apat O (2004) Rapporto rifiuti 2004. I Vol U rbani–disponibile sul sito www Oss it

  25. Nappi P, Jacomini C (2002) Guida tecnica su metodi di analisi per il suolo ei siti contaminati. RTI CTN_SSC 2

  26. Cesaro A, Belgiorno V, Guida M (2015) Compost from organic solid waste: quality assessment and European regulations for its sustainable use. Resour Conserv Recycl 94:72–79. https://doi.org/10.1016/j.resconrec.2014.11.003

    Article  Google Scholar 

  27. Wang X, Selvam A, Chan M, Wong JWC (2013) Nitrogen conservation and acidity control during food wastes composting through struvite formation. Bioresour Technol 147:17–22. https://doi.org/10.1016/j.biortech.2013.07.060

    Article  CAS  PubMed  Google Scholar 

  28. APHA, WEF (2005) Standard methods for the examination of water and wastewater, vol 21, pp 258–259

  29. Nkoa R (2014) Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustain Dev 34(2):473–492

    Article  Google Scholar 

  30. Jingura RM, Kamusoko R (2017) Methods for determination of biomethane potential of feedstocks: a review. Biofuel Res J 4(2):573–586

    Article  CAS  Google Scholar 

  31. Iacovidou E, Ohandja D-G, Voulvoulis N (2012) Food waste co-digestion with sewage sludge—realising its potential in the UK. J Environ Manag 112:267–274. https://www.sciencedirect.com/science/article/pii/S0301479712003933

  32. ISPRA (2019) IS per la P e la RA. Rapporto Rifiuti Urbani. J Chem Inf Model 1689–1699. www.isprambiente.gov.it

  33. Utilitalia (2020) La gestione e il recupero delle bioplastiche 1–10

  34. Vasmara C, Marchetti R (2018) Biogas production from biodegradable bioplastics. Environ Eng Manag J 15(9):2041–2048

    Article  Google Scholar 

  35. Mohee R, Unmar GD, Mudhoo A, Khadoo P (2008) Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Waste Manag 28(9):1624–1629

    Article  CAS  PubMed  Google Scholar 

  36. Bouallagui H, Haouari O, Touhami Y, Ben Cheikh R, Marouani L, Hamdi M (2004) Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste. Process Biochem 39(12):2143–2148

    Article  CAS  Google Scholar 

  37. Ren Y, Yu M, Wu C, Wang Q, Gao M, Huang Q et al (2018) A comprehensive review on food waste anaerobic digestion: research updates and tendencies. Bioresour Technol 247(July 2017):1069–1076. https://doi.org/10.1016/j.biortech.2017.09.109

    Article  CAS  PubMed  Google Scholar 

  38. Sheets JP, Yang L, Ge X, Wang Z, Li Y (2015) Beyond land application: emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. Waste Manag 44:94–115. https://doi.org/10.1016/j.wasman.2015.07.037

    Article  CAS  PubMed  Google Scholar 

  39. Demirel B, Scherer P, Yenigun O, Onay TT (2010) Production of methane and hydrogen from biomass through conventional and high-rate anaerobic digestion processes. Crit Rev Environ Sci Technol 40:116–146

    Article  CAS  Google Scholar 

  40. Yang Z, Wang W, He Y, Zhang R, Liu G (2018) Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions. Renew Energy 125:915–925. https://doi.org/10.1016/j.renene.2018.03.032

    Article  CAS  Google Scholar 

  41. Kale G, Kijchavengkul T, Auras R, Rubino M, Selke SE, Singh SP (2007) Compostability of bioplastic packaging materials: an overview. Macromol Biosci 7(3):255–277

    Article  CAS  PubMed  Google Scholar 

  42. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  PubMed  Google Scholar 

  43. Massardier-Nageotte V, Pestre C, Cruard-Pradet T, Bayard R (2006) Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polym Degrad Stab 91:620–627

    Article  CAS  Google Scholar 

  44. Shin PK, Kirn MH, Kim JM (1997) Biodegradability of degradable plastics exposed to anaerobic digested sludge and simulated landfill conditions. J Environ Polym Degrad 5(1):33–39

    CAS  Google Scholar 

  45. Bhatt R, Shah D, Patel KC, Trivedi U (2008) PHA-rubber blends: synthesis, characterization and biodegradation. Bioresour Technol 99(11):4615–2460

    Article  CAS  PubMed  Google Scholar 

  46. Chiumenti R, Chiumenti A (2002) La tecnologia del compostaggio. Reg Veneto-ARPAV

  47. Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T (2017) Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polym Degrad Stab 137:251–271. https://doi.org/10.1016/j.polymdegradstab.2017.01.017

    Article  CAS  Google Scholar 

  48. Karak T, Sonar I, Paul RK, Das S, Boruah RK, Dutta AK et al (2014) Composting of cow dung and crop residues using termite mounds as bulking agent. Bioresour Technol 169:731–741. https://doi.org/10.1016/j.biortech.2014.06.110

    Article  CAS  PubMed  Google Scholar 

  49. Ho KG, Pometto AL III, Hinz PN (1999) Effects of temperature and relative humidity on polylactic acid plastic degradation. J Environ Polym Degrad 7(2):83–92

    Article  CAS  Google Scholar 

  50. Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomater Silver Jubil Compend 17(2):117–128

    Article  Google Scholar 

  51. Adamcová D, Vaverková M (2014) Biodegradation of degradable/biodegradable plastic material in controlled composting environment. Pol J Environ Stud 23(5):1465–1474

    Google Scholar 

  52. Richard TL, Hamelers HVM, Veeken A, Silva T (2002) Moisture relationships in composting processes. Compost Sci Util 10(4):286–302

    Article  Google Scholar 

  53. Luzi F, Fortunati E, Puglia D, Petrucci R, Kenny JM, Torre L (2015) Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia oceanica. Polym Degrad Stab 121:105–115. https://doi.org/10.1016/j.polymdegradstab.2015.08.016

    Article  CAS  Google Scholar 

  54. Petinakis E, Liu X, Yu L, Way C, Sangwan P, Dean K et al (2010) Biodegradation and thermal decomposition of poly(lactic acid)-based materials reinforced by hydrophilic fillers. Polym Degrad Stab 95(9):1704–1707. https://doi.org/10.1016/j.polymdegradstab.2010.05.027

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Puglisi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandini, F., Frache, A., Ferrarini, A. et al. Fate of Biodegradable Polymers Under Industrial Conditions for Anaerobic Digestion and Aerobic Composting of Food Waste. J Polym Environ 28, 2539–2550 (2020). https://doi.org/10.1007/s10924-020-01791-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01791-y

Keywords

Navigation