Skip to main content

Advertisement

Log in

Hoplitomerycidae (Late Miocene, Italy), an Example of Giantism in Insular Ruminants

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The remains of the largest Hoplitomeryx known to date have been retrieved from the upper Miocene limestones of Scontrone (Abruzzo, central Italy). Hoplitomerycidae derived from small-sized Oligocene Tragulina ruminants. Therefore, this is the first giant insular ruminant ever described. Insular giantism has been notoriously exhibited by other taxa, such as rodents. It is suspected for the largest Cretan deer Candiacervus, if these cervids monophyletically are derived from Dama. This large Hoplitomeryx was a lightly built animal with long, slender limbs. This case shows not only that insular giantism can be attained also on large islands, but confirms that it can be promoted by competitive release and immigrant selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blondel C (1997) Les ruminants de Pech Desse et de Pech du Fraysse (Quercy; MP28); évolution des ruminants de l’Oligocène d’Europe. Geobios 30:575–591

    Google Scholar 

  • Bover P (2004) Noves aportacions al coneixement del gènere Myotragus Bate, 1909 (Artiodactyla, Caprinae) de les Illes Balears. Dissertation, University of Palma de Mallorca

  • Bover P, Alcover JA (2005) A taxonomic approach to the insular caprines from the Gymnesic Islands (western Mediterranean Sea). In: Crégut E (ed) Les ongulés holarctiques du Pliocène et du Pléistocène, Quaternaire, hors-série 2. Actes Colloque international Avignon, 19–22 Septembre 2000, pp 213–220

  • Bover P, Quintanab J, Alcover JA (2008) Three islands, three worlds: paleogeography and evolution of the vertebrate fauna from the Balearic Islands. Quaternary Internatl 182:135–144

    Article  Google Scholar 

  • Capasso Barbato L, Petronio C (1986) Cervus major n.sp. of Bate Cave (Rethymnon, Crete). Atti Accad Naz Lincei, Mem cl Sc Fis Mat e Nat Ser VIII 18:59–100

  • Carlquist S (1965) Island life. Natural History Press, Boston

    Google Scholar 

  • Case TJ (1978) A general explanation for insular body size trends in terrestrial vertebrates. Ecology 59:1–18

    Article  Google Scholar 

  • Damuth J (1993) Cope’s rule, the island rule and the scaling of mammalian population densities. Nature 365:748–750

    Article  CAS  PubMed  Google Scholar 

  • Darlington PJ (1957) Zoogeography: the Geographical Distribution of Animals. John Wiley, New York

    Google Scholar 

  • de Vos J (1979) The endemic Pleistocene deer of Crete. Proc K Ned Akad B Phys 82:59–90

    Google Scholar 

  • de Vos J (1984) The endemic Pleistocene deer of Crete. Verh K Ned Akad Wet Afd Natuurkd (Eerste Reeks) 31:1–100

    Google Scholar 

  • de Vos J (1996) Taxonomy, ancestry and speciation of the endemic Pleistocene deer of Crete compared with the taxonomy, ancestry and speciation of Darwin’s finches. In: Reese DS (ed) Pleistocene and Holocene Fauna of Crete and its First Settlers. Prehistoric Press, Madison, pp 111–124

    Google Scholar 

  • de Vos J (2000) Pleistocene deer fauna in Crete: its adaptive radiation and extinction. Tropics 10:125–134

    Article  Google Scholar 

  • de Vos J (2006) Notes about the parallels in evolution of the Pleistocene cervids from Greece (Crete, Kassos and Karpathos), Japan (the Ryukyu-islands) and Philippines (Masbate). Hell J Geosci 41:127–140

    Google Scholar 

  • Dermitzakis MD, de Vos J (1987) Faunal succession and the evolution of mammals in Crete during the Pleistocene. Neues Jahrb Geol Pal Abh 173 (3):377–408

    Google Scholar 

  • Foster JB (1964) Evolution of mammals on islands. Nature 202:234–235

    Article  Google Scholar 

  • Gilbert JJ, Confer JL (1986) Gigantism and the potential for interference competition in the rotifer genus Asplanchna. Oecologia 70:549–554

    Article  Google Scholar 

  • Gould GC, MacFadden BJ (2004) Gigantism, dwarfism, and Cope’s Rule, ‘Nothing in evolution makes sense without a phylogeny.' Bull Am Mus Nat Hist 285:219–237

  • Hassanin A, Douzery EJP (2003) Molecular and morphological phylogenies of Ruminantia and the alternative position of the Moschidae. Syst Biol 52:206–228

    Article  PubMed  Google Scholar 

  • Hernández Fernández M, Vrba ES (2005) A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev 80:269–302

    Article  PubMed  Google Scholar 

  • Janis CM, Scott KM (1987) The origin of the higher ruminant families with special reference to the origin of Cervoidea and relationships within the Cervoidea. Am Mus Novitates 2893:1–5

    Google Scholar 

  • Leinders JJM (1983) Hoplitomerycidae fam. nov. (Ruminantia, Mammalia) from Neogene fissure fillings in Gargano (Italy). Part.1: the cranial osteology of Hoplitomeryx gen. nov. and discussion on the classification of pecoran families. Scripta Geol 70:1–8

    Google Scholar 

  • Lomolino MV (1985) Body size of mammals on islands: the island rule re-examined. Am Naturalist 125:310–316

    Article  Google Scholar 

  • Lomolino MV (2005) Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr 32:1683–1699

    Article  Google Scholar 

  • Lyras GA, Dermitzakis MD, van der Geer AAE, van der Geer SB, de Vos J (2009) The origin of Homo floresiensis and its relation to evolutionary processes under isolation. Anthropol Sci 117:33–43

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Mazza PPA (2013a) The systematic position of Hoplitomerycidae revisited. Geobios 46:33–42

    Article  Google Scholar 

  • Mazza PPA (2013b) Hoplitomericidae (Ruminantia, late Miocene, central-southeastern Italy): whom and where from? Geobios 46:511–520

    Article  Google Scholar 

  • Mazza P, Rustioni M (2008) Processes of island colonization by Oligo-Miocene land mammals in the central Mediterranean: new data from Scontrone (Abruzzo, Central Italy) and Gargano (Apulia, Southern Italy). Palaeogeogr Palaeocl Palaeoecol 267:208–215

    Article  Google Scholar 

  • Mazza P, Rustioni M (2011) Five new species of Hoplitomeryx from the Neogene of Abruzzo and Apulia (central and southern Italy) with revision of the genus and of Hoplitomeryx matthei Leinders, 1983. Zool J Linn Soc 163:1304–1333

    Article  Google Scholar 

  • Meijer HJM, van den Hoek Ostende LW, van den Bergh GD, de Vos JD (2010) The fellowship of the hobbit: the fauna surrounding Homo floresiensis. J Biogeogr 37:995–1006

    Article  Google Scholar 

  • Mertens R (1942) Lacerta goliath n. sp., eine ausgestorbene Rieseneidechse von den Kanaren. Senckenbergiana 25:330–339

    Google Scholar 

  • Métais G, Antoine P-O, Marivaux L, Ducrocq S, Welcomme J-L (2003) New artiodactyl ruminant mammal from the late Oligocene of Pakistan. Acta Palaeontol Pol 48:375–382

    Google Scholar 

  • Patacca E, Scandone P, Mazza P (2008) Oligocene migration path for Apulia macromammals: the Central-Adriatic bridge. Boll Soc Geol Ital 127:337–355

    Google Scholar 

  • Patacca E, Scandone P, Carnevale G (2013) The Miocene vertebrate-bearing deposits of Scontrone (Abruzzo, Central Italy): stratigraphy and paleoenvironment analysis. Geobios 46:5–23

    Article  Google Scholar 

  • Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350

    Article  CAS  PubMed  Google Scholar 

  • Raia P, Meiri S (2006) The island rule in large mammals: paleontology meets ecology. Evolution 60:1731–1742

    Article  PubMed  Google Scholar 

  • Reumer JWF (2007) Habitat fragmentation and the extinction of mammoths (Mammuthus primigenius, Proboscidea, Mammalia): arguments for a causal relationship. In: Kahlke R-D, Maul LC, Mazza PP (eds) Late Neogene and Quaternary biodiversity and evolution: Regional developments and interregional correlations Proceedings of the 18th International Senckenberg Conference, VI International Palaeontological Colloquium in Weimar, Vol. I. Courier Forschungsinstitut Senckenberg 256, Frankfurt, pp 279–286

  • Schmidt NM, Jensen PM (2003) Changes in mammalian body length over 175 years – adaptations to a fragmented landscape? Conserv Ecol 7:6

    Google Scholar 

  • Scott KM (1990) Postcranial dimensions of ungulates as predictors of body mass. In: Damuth J, Macfadden BJ (eds) Body Size in Mammalian Paleobiology: Estimation and Biological Implication. Cambridge University Press, Cambridge, pp. 301–336

    Google Scholar 

  • Smith FA (1995) Scaling of digestive efficiency with body mass in Neotoma. Funct Ecol 9:299–305

    Article  Google Scholar 

  • Sondaar PY (1977) Insularity and its effects on mammal evolution. In: Hecht MK, Goody PC, Hecht BM (eds) Major Patterns of Vertebrate Evolution. Plenum Press, New York, pp 671–707

    Chapter  Google Scholar 

  • van der Geer AAE (1999) On the astragalus of the Miocene endemic deer Hoplitomeryx from the Gargano (Italy). In: Reumer J, de Vos J (eds) Elephants Have a Snorkel! Papers in Honour of P.Y. Sondaar. Natuurmuseum Rotterdam, Deinsea 7, Rotterdam, pp 325–336

  • van der Geer AAE (2005a) Island ruminants and parallel evolution of functional structures. In: Crégut-Bonnoure E (ed) Les ongulés holarctiques du Pliocène et du Pléistocène. Maison de la Géologie, Paris, pp 231–240

    Google Scholar 

  • van der Geer AAE (2005b) The postcranial of the deer Hoplitomeryx (Mio-Pliocene; Italy): another example of adaptive radiation on Eastern Mediterranean Islands. Monogr Soc Hist Nat Balears 12:325–336

  • van der Geer AAE (2008) The effect of insularity on the Eastern Mediterranean early cervoid Hoplitomeryx: the study of the forelimb. Quaternary Internatl 182:145–159

    Article  Google Scholar 

  • van der Geer A, Dermitzakis M, de Vos J (2006) Crete before the Cretans: the reign of dwarfs. Pharos 13:119–130

    Google Scholar 

  • van der Geer A, Lyras G, de Vos J, Drinia H (2013) Morphology of articular surfaces can solve a phylogenetic issue: one instead of two ancestors for Candiacervus (Mammalia: Cervoidea) (Abstract). Zitteliana B 31: 33–34

  • van der Made J, Palombo MR (2006) Megaloceros sardus n.sp., a large deer from the Pleistocene of Sardinia. Hell J Geosci 41:163–176

    Google Scholar 

  • Van Valen L (1973) Pattern and the balance of nature. Evol Theor 1:31–49

    Google Scholar 

  • Vislobokova IA (2001) Evolution and Classification of Tragulina (Ruminantia, Artiodactyla). Paleontol Zh 35:69–145

    Google Scholar 

  • Vislobokova IA, Trofimov BA (2002) Archaeomeryx (Archaeomerycidae, Ruminantia): morphology, ecology, and role in the evolution of the Artiodactyla. Paleontol J 36, supplement 5:429–522

Download references

Acknowledgments

We are greatful to two anonymous reviewers who substantially improved this article. The study was financed by MIUR (Ministry of Education, University and Research grants: PRIN 2009MSSS9L_002 - resp. P.P.A. Mazza) funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Peter Anthony Mazza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazza, P.P.A., Rossi, M.A. & Agostini, S. Hoplitomerycidae (Late Miocene, Italy), an Example of Giantism in Insular Ruminants. J Mammal Evol 22, 271–277 (2015). https://doi.org/10.1007/s10914-014-9277-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-014-9277-2

Keywords

Navigation