Skip to main content
Log in

A four-step exponentially fitted method for the numerical solution of the Schrödinger equation

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

In this paper, we present an exponentially fitted four-step method for the numerical solution of the radial Schrödinger equation. More specifically we present a method that integrates exactly the functions {exp ( ±w x) , x {exp ( ±w x)}. We illustrated the efficiency of our newly produced scheme against well known methods, with excellent results. The numerical results showed that our method is considerably more efficient compared to well known methods used for the numerical solution of resonance problem of the radial Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ixaru L.Gr., Micu M., (1978). Topics in Theoretical Physics. Central Institute of Physics, Bucharest

    Google Scholar 

  2. Landau L.D, Lifshitz F.M, (1965). Quantum Mechanics. Pergamon, New York

    Google Scholar 

  3. Prigogine I, Stuart Rice (eds), (1997). Advances in Chemical Physics Vol. 93: New Methods in Computational Quantum Mechanics. Wiley, New York

    Google Scholar 

  4. Herzberg G, (1950).Spectra of Diatomic Molecules. Van Nostrand, Toronto

    Google Scholar 

  5. Simos T.E, in: Atomic Structure Computations in Chemical Modelling: Applications and Theory, in: (The Royal Society of Chemistry, (ed.), A. Hinchliffe UMIST, 2000), pp. 38–142

  6. Simos T.E, Numerical methods for 1D, 2D and 3D differential equations arising in chemical problems, in: Chemical Modelling: Application and Theory (The Royal Society of Chemistry, UMIST, 2002), pp. 170–270

  7. Simos T.E, Williams P.S, (1999) On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23: 513–554

    Article  CAS  Google Scholar 

  8. Simos T.E, Numerical solution of ordinary differential equations with periodical solution, Doctoral Dissertation, National Technical University of Athens, Greece (1990) (in Greek).

  9. Konguetsof A, Simos T.E, (2001) On the construction of exponentially-fitted methods for the numerical solution of the Schrödinger equation. J. Comput. Methods Sci. Eng. 1: 143–165

    Google Scholar 

  10. Simos T.E, (1997) Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem. J. Math. Chem. 21: 359–372

    Article  CAS  Google Scholar 

  11. Simos T.E, (1998) Some embedded modified Runge–Kutta methods for the numerical solution of some specific Schrodinger equations, J. Math. Chem. 24: 23–37

    Article  CAS  Google Scholar 

  12. Simos T.E, (1999) A family of P-stable exponentially-fitted methods for the numerical solution of the Schrodinger equation. J. Math. Chem. 25: 65–84

    Article  CAS  Google Scholar 

  13. Avdelas G, Simos T.E, (1999) Embedded eighth order methods for the numerical solution of the Schrodinger equation. J. Math. Chem. 26: 327–341

    Article  Google Scholar 

  14. Simos T.E, (2000) A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrodinger equation. J. Math. Chem. 27: 343–356

    Article  CAS  Google Scholar 

  15. Jesus Vigo-Aguiar, Simos T.E, (2001) A family of P-stable eighth algebraic order methods with exponential fitting facilities. J. Math. Chem. 29: 177–189

    Article  Google Scholar 

  16. Avdelas G, Konguetsof A, Simos T.E, (2001) A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrodinger equation Part 1 Development of the basic method. J. Math. Chem. 29: 281–291

    Article  CAS  Google Scholar 

  17. Avdelas G, Konguetsof A, Simos T.E, (2001) A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrodinger equation Part 2 Development of the generator, optimized generator and numerical results. J. Math. Chem. 29: 293–305

    Article  CAS  Google Scholar 

  18. Simos T.E, Vigo-Aguiar J., (2001) A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrodinger equation. J. Math. Chem. 30: 121–131

    Article  CAS  Google Scholar 

  19. Simos T.E, Vigo-Aguiar J., (2002) Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrodinger equation, J. Math. Chem. 31: 135–144

    Article  CAS  Google Scholar 

  20. Kalogiratou Z, Simos T.E, (2002) Construction of trigonometrically and exponentially fotted Runge-Kutta-Nystrom methods for the numerical solution of the Schrodinger equation and related problems. J. Math. Chem. 31: 211–232

    Article  CAS  Google Scholar 

  21. Vigo-Aguiar J., Simos T.E, (2002) Family of twelve steps exponentially fitting symmetric multistep methods for the numerical solution of the Schrodinger equation. J. Math. Chem. 32: 257–270

    Article  CAS  Google Scholar 

  22. Avdelas G, Kefalidis E, Simos T.E, (2002) New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrodinger equation. J. Math. Chem. 31: 371–404

    Article  CAS  Google Scholar 

  23. Simos T.E, (2003) A family of trigonometrically fitted symmetric methods for the efficient solution of the Schrodinger equation and related problems. J. Math. Chem. 34: 39–58

    Article  CAS  Google Scholar 

  24. Kostas Tselios, Simos T.E, (2003) Symplectic methods for the numerical solution of the radial Shrodinger equation J. Math. Chem. 34: 83–94

    Article  Google Scholar 

  25. Raptis A.D, Allison A.C, (1978) Exponential – fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14: 1–5

    Article  Google Scholar 

  26. Raptis A.D, (1984) Exponential multistep methods for ordinary differential equations. Bull. Greek Math. Soc. 25: 113–126

    Google Scholar 

  27. Ixaru L.Gr., (1984). Numerical Methods for Differential Equations and Applications. Reidel, Dordrecht - Boston - Lancaster

    Google Scholar 

  28. Ixaru L.Gr., Rizea M, (1980) A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19: 23–27

    Article  Google Scholar 

  29. Blatt J.M, (1967) Practical points concerning the solution of the Schrödinger equation. J. Comput. Phys. 1: 382–396

    Article  Google Scholar 

  30. Cooley J.W, (1961) An improved eigenvalue corrector formula for solving Schrödinger’s equation for central fields. Math. Comp. 15: 363–374

    Article  Google Scholar 

  31. Simos T.E., Williams P.S, (2002) A new Runge–Kutta–Nystrom method with Phase-Lag of order infinity for the numerical solution of the Schrödinger Equation, MATCH Commun. Math. Comput. Chem. 45: 123–137

    CAS  Google Scholar 

  32. Simos T.E., (2004) Multiderivative methods for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 45: 7–26

    Google Scholar 

  33. Hairer E., Norsett S.P, Wanner G., (1987). Solving Ordinary Differential Equations I. Springer-Verlag, Berlin

    Google Scholar 

  34. Allison A.C, (1970) The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6: 378–391

    Article  Google Scholar 

  35. Berstein R.B, Dalgarno A., Massey H, Percival I.C, (1963) Thermal scattering of atoms by homonuclear diatomic molecules. Proc. Royal Soc. Lond. Ser. A 274: 427–442

    Google Scholar 

  36. Berstrein R.B, (1960) Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33: 795–804

    Article  Google Scholar 

  37. Raptis A.D, Cash J.R. (1985) A variable step method for the numerical integration of the one-dimensional Schrödinger equation, Comput. Phys. Commun. 36: 113–119

    Article  CAS  Google Scholar 

  38. Papakaliatakis G, Simos T.E, (1999) A new finite-difference method with minimal phase-lag for the numerical solution of differential equations with engineering applications, Adv. Eng. Softw. 30: 103–107

    Article  Google Scholar 

  39. Raptis A.D, Simos T.E, (1991) A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31: 160–168

    Article  Google Scholar 

  40. Raptis A.D, (1983) Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28: 427–431

    Article  Google Scholar 

  41. Raptis A.D, (1981) On the numerical solution of the Schrodinger equation. Comput. Phys. Commun. 24: 1–4

    Article  Google Scholar 

  42. Zacharoula Kalogiratou, Simos T.E, (2000) A P-stable exponentially-fitted method for the numerical integration of the Schrödinger equation. Appl. Math. Comput. 112: 99–112

    Article  Google Scholar 

  43. Peter Henrici, (1962). Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York

    Google Scholar 

  44. Chawla M.M, (1983) Uncoditionally stable Noumerov-type methods for second order differential equations. BIT 23: 541–542

    Article  Google Scholar 

  45. Liviu Gr. Ixaru, Guido Vanden Berghe, (2004). Exponential Fitting, Series on Mathematics and its Applications, Vol 568. Kluwer Academic Publisher, The Netherlands

    Google Scholar 

  46. Anastassi Z.A, Simos T.E, (2004) Special optimized Runge-Kutta methods for IVPs with oscillating solutions. Int. J. Mod. Phys. C 15(1): 1–15

    Article  Google Scholar 

  47. Simos T.E, (1996) An eighth-order method with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem. Int. J. Mod. Phys. C 7(6): 825–835

    Article  Google Scholar 

  48. Vanden Berghe G., Van Daele M., Vande Vyver H., (2004) Exponentially-fitted algorithms: fixed or frequency dependent knot points? Appl. Num. Anal. Comp. Math. 1(1): 49–65

    Article  Google Scholar 

  49. Th. Monovasilis, Kalogiratou Z, Simos T.E, (2004) Numerical Solution of the two-dimensional time independent Schrödinger Equation by symplectic schemes Appl. Num. Anal. Comp. Math. 1(1): 195–204

    Article  Google Scholar 

  50. Psihoyios G, Simos T.E, (2004) Effective numerical approximation of Schrödinger type equations through multiderivative exponentially fitted schemes. Appl. Num. Anal. Comp. Math. 1(1): 205–215

    Article  Google Scholar 

  51. Psihoyios G, Simos T.E, (2004) Efficient numerical solution of orbital problems with the use of symmetric four-step trigonometrically fitted methods, Appl. Num. Anal. Comp. Math. 1(1): 216–222

    Article  Google Scholar 

  52. Van Daele M., Vanden Berghe G., (2004) Extended one-step methods: an exponential fitting approach. Appl. Num. Anal. Comp. Math. 1(2): 353–362

    Article  Google Scholar 

  53. Vlachos D.S., Simos T.E, (2004) Partitioned linear multistep method for long term integration of the N-body problem. Appl. Num. Anal. Comp. Math. 1(2): 540–546

    Article  Google Scholar 

  54. Monovasilis Th., Kalogiratou Z., (2005) Trigonometrically and exponentially fitted symplectic methods of third order for the numerical integration of the Schrödinger equation. Appl. Num. Anal. Comp. Math. 2(2): 238–244

    Article  Google Scholar 

  55. Simos T.E, (2005) P-stable four-step exponentially fitted method for the numerical integration of the Schrödinger equation. Comput. Lett. 1(1): 37–45

    Article  Google Scholar 

  56. Lambert J.D, Watson I.A, (1976) Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18: 189–202

    Google Scholar 

  57. Coleman J.P, Numerical methods for y” = f(x, y), in Proceedings of the First International Colloquium on Numerical Analysis, eds. Bainov D, V. Civachev (Plovdiv, Bulgaria 1992) pp. 27–38.

  58. Coleman J.P, (1989) Numerical methods for y′′ = f(x,y) via rational approximation for the cosine. IMA J. Numer. Anal. 9: 145–165

    Google Scholar 

  59. Chawla M.M, (1984) Numerov made explicit has better stability. BIT 24: 117–118

    Article  Google Scholar 

  60. Chawla M.M, Rao P.S, (1986) A Numerov-type method with minimal phase-lag for the integration of second order periodic initial-value problems. II Explicit method. J. Comput. Appl. Math. 15: 329–337

    Article  Google Scholar 

  61. Dormand J.R, El-Mikkawy M.E., Prince P.J, (1987) Families of Runge-Kutta- Nyström formulae. IMA J. Numer. Anal. 7: 423–430

    Google Scholar 

  62. Dormand J.R, El-Mikkawy M.E.A., Prince P.J, (1987) High-Order Embedded Runge-Kutta- Nyström Formulae, IMA J. Numer. Anal. 7: 595–617

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simos, T.E. A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J Math Chem 40, 305–318 (2006). https://doi.org/10.1007/s10910-006-9170-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-006-9170-1

Keywords

Navigation