Skip to main content
Log in

Quantum Information Transmission with Topological Edge States

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superconducting heterostructures can host subgap states known as Andreev bound states. In topological superconducting systems, novel zero-energy Andreev states were discovered known as Majorana zero modes. Local Majorana zero modes serve as basic ingredients of topological quantum computations. To simplify manipulations, one can use chiral Majorana-fermion edge transport in gapped two-dimensional systems. Here we demonstrate how this approach can be used with continuous-spectrum edge Majorana in the Kitaev honeycomb model and discuss quantum-state transmission along the edge and its fidelity, using auxiliary external qubits as edge probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. A.Y. Kitaev, Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003). https://doi.org/10.1016/S0003-4916(02)00018-0

    Article  ADS  MathSciNet  Google Scholar 

  2. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008). https://doi.org/10.1103/RevModPhys.80.1083

    Article  ADS  MathSciNet  Google Scholar 

  3. V. Lahtinen, J.K. Pachos, A short introduction to topological quantum computation. SciPost Phys. 3, 021 (2017). https://doi.org/10.21468/SciPostPhys.3.3.021

    Article  ADS  Google Scholar 

  4. R. Willett, J.P. Eisenstein, H.L. Störmer, D.C. Tsui, A.C. Gossard, J.H. English, Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987). https://doi.org/10.1103/PhysRevLett.59.1776

    Article  ADS  Google Scholar 

  5. R.L. Willett, K. Shtengel, C. Nayak, L.N. Pfeiffer, Y.J. Chung, M.L. Peabody, K.W. Baldwin, K.W. West, Interference measurements of non-abelian \(e/4\) and abelian \(e/2\) quasiparticle braiding. Phys. Rev. X 13, 011028 (2023). https://doi.org/10.1103/PhysRevX.13.011028

    Article  Google Scholar 

  6. A.Y. Kitaev, Unpaired Majorana fermions in quantum wires. Phys. Usp. 44(10S), 131 (2001). https://doi.org/10.1070/1063-7869/44/10S/S29

    Article  ADS  Google Scholar 

  7. J. Alicea, Y. Oreg, G. Refael, F. von Oppen, M.P.A. Fisher, Non-abelian statistics and topological quantum information processing in 1d wire networks. Nat. Phys. 7(5), 412–417 (2011). https://doi.org/10.1038/nphys1915

    Article  Google Scholar 

  8. J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems. Rep. Progr. Phys. 75(7), 076501 (2012). https://doi.org/10.1088/0034-4885/75/7/076501

    Article  ADS  Google Scholar 

  9. R.M. Lutchyn, E.P.A.M. Bakkers, L.P. Kouwenhoven, P. Krogstrup, C.M. Marcus, Y. Oreg, Majorana zero modes in superconductor-semiconductor heterostructures. Nature Rev. Mat. 3, 52–68 (2018). https://doi.org/10.1038/s41578-018-0003-1

    Article  ADS  Google Scholar 

  10. A. Kitaev, Anyons in an exactly solved model and beyond. Ann. Phys. 321(1), 2 (2006). https://doi.org/10.1016/j.aop.2005.10.005

    Article  ADS  MathSciNet  Google Scholar 

  11. A.F. Andreev, The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP 19, 1228–1231 (1964). [Zh. Eksp. Teor. Fiz., 46, 1823 (1964)]

  12. A.F. Andreev, Electron spectrum of the intermediate state of superconductors. Sov. Phys. JETP 22, 455–458 (1966). [Zh. Eksp. Teor. Fiz., 49, 655 (1965)]

  13. D.A. Ivanov, Non-abelian statistics of half-quantum vortices in \(p\)-wave superconductors. Phys. Rev. Lett. 86, 268–271 (2001). https://doi.org/10.1103/PhysRevLett.86.268

    Article  ADS  Google Scholar 

  14. P. Bonderson, M. Freedman, C. Nayak, Measurement-only topological quantum computation. Phys. Rev. Lett. 101, 010501 (2008). https://doi.org/10.1103/PhysRevLett.101.010501

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Bonderson, M. Freedman, C. Nayak, Measurement-only topological quantum computation via anyonic interferometry. Ann. Phys. 324(4), 787–826 (2009). https://doi.org/10.1016/j.aop.2008.09.009

    Article  ADS  MathSciNet  Google Scholar 

  16. T. Karzig, C. Knapp, R.M. Lutchyn, P. Bonderson, M.B. Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg, C.M. Marcus, M.H. Freedman, Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes. Phys. Rev. B 95, 235305 (2017). https://doi.org/10.1103/PhysRevB.95.235305

    Article  ADS  Google Scholar 

  17. D. Litinski, F. von Oppen, Quantum computing with Majorana fermion codes. Phys. Rev. B 97, 205404 (2018). https://doi.org/10.1103/PhysRevB.97.205404

    Article  ADS  Google Scholar 

  18. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008). https://doi.org/10.1103/RevModPhys.80.1083

    Article  ADS  MathSciNet  Google Scholar 

  19. S.S. Hegde, G. Yue, Y. Wang, E. Huemiller, D.J. Van Harlingen, S. Vishveshwara, A topological Josephson junction platform for creating, manipulating, and braiding Majorana bound states. Ann. Phys. 423, 168326 (2020). https://doi.org/10.1016/j.aop.2020.168326

    Article  MathSciNet  Google Scholar 

  20. C.W.J. Beenakker, Search for non-Abelian Majorana braiding statistics in superconductors. SciPost Phys. Lect. Notes 15, (2020). https://doi.org/10.21468/SciPostPhysLectNotes.15

  21. B. Lian, X.-Q. Sun, A. Vaezi, X.-L. Qi, S.-C. Zhang, Topological quantum computation based on chiral Majorana fermions. PNAS 115, 10938 (2018). https://doi.org/10.1073/pnas.1810003115

    Article  ADS  MathSciNet  Google Scholar 

  22. C.W.J. Beenakker, P. Baireuther, Y. Herasymenko, I. Adagideli, L. Wang, A.R. Akhmerov, Deterministic creation and braiding of chiral edge vortices. Phys. Rev. Lett. 122, 146803 (2019). https://doi.org/10.1103/PhysRevLett.122.146803

    Article  ADS  Google Scholar 

  23. P. Fendley, M.P.A. Fisher, C. Nayak, Edge states and tunneling of non-Abelian quasiparticles in the \(\nu =5/2\) quantum Hall state and \(p+ip\) superconductors. Phys. Rev. B 75, 045317 (2007). https://doi.org/10.1103/PhysRevB.75.045317

    Article  ADS  Google Scholar 

  24. M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010). https://doi.org/10.1103/RevModPhys.82.3045

    Article  ADS  Google Scholar 

  25. G.E. Volovik, The Universe in a Helium Droplet (Oxford University Press, United Kingdom, 2010). https://doi.org/10.1093/acprof:oso/9780199564842.001.0001

    Book  Google Scholar 

  26. I. Timoshuk, K. Tikhonov, Yu. Makhlin, Quantum computation at the edge of a disordered Kitaev honeycomb lattice. Sci. Rep. 13, 15263 (2023). https://doi.org/10.1038/s41598-023-41997-3

    Article  ADS  Google Scholar 

  27. A.R. Akhmerov, J. Nilsson, C.W.J. Beenakker, Electrically detected interferometry of Majorana fermions in a topological insulator. Phys. Rev. Lett. 102, 216404 (2009). https://doi.org/10.1103/PhysRevLett.102.216404

    Article  ADS  Google Scholar 

  28. D. Aasen, R.S.K. Mong, B.M. Hunt, D. Mandrus, J. Alicea, Electrical probes of the non-abelian spin liquid in Kitaev materials. Phys. Rev. X 10, 031014 (2020). https://doi.org/10.1103/PhysRevX.10.031014

    Article  Google Scholar 

  29. K. Klocke, D. Aasen, R.S.K. Mong, E.A. Demler, J. Alicea, Time-domain anyon interferometry in Kitaev honeycomb spin liquids and beyond. Phys. Rev. Lett. 126, 177204 (2021). https://doi.org/10.1103/PhysRevLett.126.177204

    Article  ADS  MathSciNet  Google Scholar 

  30. J. Feldmeier, W. Natori, M. Knap, J. Knolle, Local probes for charge-neutral edge states in two-dimensional quantum magnets. Phys. Rev. B 102, 134423 (2020). https://doi.org/10.1103/PhysRevB.102.134423

    Article  ADS  Google Scholar 

  31. Y. Kasahara, T. Ohnishi, Y. Mizukami et al., Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018). https://doi.org/10.1038/s41586-018-0274-0

    Article  ADS  Google Scholar 

  32. T. Yokoi, S. Ma, Y. Kasahara, S. Kasahara et al., Half-integer quantized anomalous thermal Hall effect in the Kitaev material candidate \(\alpha\)-RuCl\(_3\). Science 373, 568–572 (2021). https://doi.org/10.1126/science.aay5551

    Article  ADS  MathSciNet  Google Scholar 

  33. O. Tanaka, Y. Mizukami, R. Harasawa et al., Thermodynamic evidence for a field-angle-dependent Majorana gap in a Kitaev spin liquid. Nat. Phys. 18, 429–435 (2022). https://doi.org/10.1038/s41567-021-01488-6

    Article  Google Scholar 

  34. S. Trebst, C. Hickey, Kitaev materials. Phys. Rep. 950, 1–37 (2022). https://doi.org/10.1016/j.physrep.2021.11.003

    Article  ADS  Google Scholar 

  35. J.Q. You, X.-F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits. Phys. Rev. B 81, 014505 (2010). https://doi.org/10.1103/PhysRevB.81.014505

    Article  ADS  Google Scholar 

  36. M. Sameti, M.J. Hartmann, Floquet engineering in superconducting circuits: from arbitrary spin-spin interactions to the Kitaev honeycomb model. Phys. Rev. A 99, 012333 (2019). https://doi.org/10.1103/PhysRevA.99.012333

    Article  ADS  Google Scholar 

  37. K.J. Satzinger et al., Realizing topologically ordered states on a quantum processor. Science 374, 1237–1241 (2021). https://doi.org/10.1126/science.abi8

    Article  ADS  Google Scholar 

  38. M. Thakurathi, K. Sengupta, D. Sen, Majorana edge modes in the Kitaev model. Phys. Rev. B 89, 235434 (2014). https://doi.org/10.1103/PhysRevB.89.235434

    Article  ADS  Google Scholar 

  39. X.-Y. Song, Y.-Z. You, L. Balents, Low-energy spin dynamics of the honeycomb spin liquid beyond the Kitaev limit. Phys. Rev. Lett. 117, 037209 (2016). https://doi.org/10.1103/PhysRevLett.117.037209

    Article  ADS  Google Scholar 

  40. A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995). https://doi.org/10.1103/PhysRevA.52.3457

    Article  ADS  Google Scholar 

  41. D. Deutsch, A. Barenco, A. Ekert, Universality in quantum computation. Proc. R. Soc. Lond. A 449, 669–677 (1995). https://doi.org/10.1098/rspa.1995.0065

    Article  ADS  MathSciNet  Google Scholar 

  42. D.P. DiVincenzo, Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015–1022 (1995). https://doi.org/10.1103/PhysRevA.51.1015

    Article  ADS  Google Scholar 

  43. F. Arute et al., Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019). https://doi.org/10.5061/dryad.k6t1rj8

    Article  ADS  Google Scholar 

  44. J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007). https://doi.org/10.1103/PhysRevA.76.042319

    Article  ADS  Google Scholar 

  45. Yu. Makhlin, G. Schön, A. Shnirman, Josephson-junction qubits with controlled couplings. Nature 398, 305 (1999). https://doi.org/10.1038/18613

    Article  ADS  Google Scholar 

  46. D.V. Averin, C. Bruder, Variable electrostatic transformer: controllable coupling of two charge qubits. Phys. Rev. Lett. 91, 057003 (2003). https://doi.org/10.1103/PhysRevLett.91.057003

    Article  ADS  Google Scholar 

  47. C. Hutter, A. Shnirman, Yu. Makhlin, G. Schön, Tunable coupling of qubits: nonadiabatic corrections. Europhys. Lett. 74, 1088 (2006). https://doi.org/10.1209/epl/i2006-10054-4

    Article  ADS  Google Scholar 

  48. F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D.L. Campbell, T.P. Orlando, S. Gustavsson, W.D. Oliver, Tunable coupling scheme for implementing high-fidelity two-qubit gates. Phys. Rev. Appl. 10, 054062 (2018). https://doi.org/10.1103/PhysRevApplied.10.054062

    Article  ADS  Google Scholar 

  49. A. Blais, A.L. Grimsmo, S.M. Girvin, A. Wallraff, Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021). https://doi.org/10.1103/RevModPhys.93.025005

    Article  ADS  MathSciNet  Google Scholar 

  50. B. Foxen et al., Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms. Phys. Rev. Lett. 125, 120504 (2020). https://doi.org/10.1103/PhysRevLett.125.120504

    Article  ADS  Google Scholar 

  51. E.H. Lieb, Flux phase of the half-filled band. Phys. Rev. Lett. 73, 2158–2161 (1994). https://doi.org/10.1103/PhysRevLett.73.2158

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Shnirman, K. Tikhonov, and A. Wallraff for useful discussions. This work has been supported by RFBR under No. 20-52-12034, by the Basic research program of HSE, and by Rosatom.

Author information

Authors and Affiliations

Authors

Contributions

IT and YM wrote and reviewed the manuscript.

Corresponding author

Correspondence to Yuriy Makhlin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Summary of the Kitaev model

Appendix A: Summary of the Kitaev model

In this appendix, we provide a brief reminder of the Kitaev honeycomb spin model and its solution [10], which is essential for our analysis of the edge modes. It is defined by the Hamiltonian

$$\begin{aligned} H&= -J_x\sum _{x-\textrm{links}} \sigma _x^i \sigma _x^j -J_y\sum _{y-\textrm{links}} \sigma _y^i \sigma _y^j \nonumber \\&\quad -J_z\sum _{z-\textrm{links}} \sigma _z^i \sigma _z^j -\textbf{h}\sum _j \pmb {\sigma }^j \end{aligned}$$
(A1)

with summations over links (between sites i, j) with three different directions on the honeycomb lattice, referred to as x-, y-, and z-links, see Fig. 1. The effect of the last Zeeman term, with summation over sites j, is discussed later, while first we consider the case of no magnetic field, \(\textbf{h}=0\). Analysis of this model is convenient in terms of Majorana fermionic modes: on each site i one defines four Majorana fermion operators, \(c^i\), \(b^i_{x,y,z}\), and the subspace of physical states in the whole Hilbert space is defined by additional constraints, which can be understood as fixing a Z\(_2\) gauge: \(D^i\equiv b^i_xb^i_yb^i_zc^i=+1\), while the spin operators are replaced by \(\sigma ^i_\alpha =ib_\alpha ^ic^i\) with \(\alpha =x,y,z\). This constraint ensures that they satisfy the standard spin algebra. Although after such fermionization the Hamiltonian appears to be of the fourth order, conservation of the relevant products \(u^{jk}=i b^j_\alpha b^k_\alpha\) along all links (with \(\alpha \equiv \alpha ^{ij}=x,y,z\) depending on the link direction) immediately renders the Hamiltonian quadratic in each sector of fixed \(u^{jk}\), with nearest-neighbor couplings \(\frac{i}{2}Ju^{jk}c_jc_k\), which allows for an exact solution [10].

In the lowest-energy sector, the system is translationally invariant [10, 51], and in the momentum representation the Hamiltonian reads:

$$\begin{aligned} H&= \frac{1}{2} \sum _\textbf{q} A(\textbf{q})_{\lambda \mu } c_{-\textbf{q}\lambda } c_{\textbf{q}\mu } \,, \end{aligned}$$
(A2)
$$\begin{aligned} A(\textbf{q})&=\begin{pmatrix} 0&{}i f(\textbf{q})\\ -i f(-\textbf{q})&{}0 \end{pmatrix}\,, \end{aligned}$$
(A3)
$$\begin{aligned} f(\textbf{q})&= 2 (J_x e^{i\textbf{qn}_1} + J_y e^{i\textbf{qn}_2} + J_z)\,, \end{aligned}$$
(A4)

where \(\textbf{n}_{1,2} = (\pm 1,\sqrt{3})/2\). Here \(\lambda\), \(\mu\) indicate the even or odd (black or white) sublattice. For real wave vectors \(\textbf{q}\) we have \(f(-\textbf{q})=f^*(\textbf{q})\), but the notation in Eq. (A4) allows one to consider also complex momenta, which will be relevant near the edge. The resulting excitation spectrum is

$$\begin{aligned} \varepsilon (\textbf{q}) = |f(\textbf{q})| \,. \end{aligned}$$
(A5)

Depending on the values of the coupling constants \(J_{x,y,z}\) various phases can be realized [10]. If they satisfy the triangle inequality (\(|J_x|<|J_y+J_z|\), \(|J_y|<|J_x+J_z|\), \(|J_z|<|J_x+J_y|\)), the system is in a gapless B-phase, which will be of interest to us below. In this case, the gap in the spectrum closes at two opposite values of momentum, \(\pm \textbf{q}^*\), in the Brillouin zone. The existence of these nodes is topologically protected by time-reversal symmetry (since under time reversal the structure of (A3) persists). Below we assume that \(J_{x,y,z}\) are in this range, and for most quantitative estimates that they are equal, where this does not change the situation qualitatively.

We are interested in a situation with a gapful 2D bulk. The gap can be opened by breaking the time-reversal symmetry with a (pseudo-)magnetic field, the last term in Eq. (A1) (its physical nature depends on a specific realization of the Kitaev model). In a weak field, \(h\ll J\), the effect of the field is described, perturbatively, by the third-order contribution:

$$\begin{aligned} V^{(3)} = -\kappa \sum _{jkl} \sigma _x^j\sigma _y^k\sigma _z^l \,, \end{aligned}$$
(A6)

where summation is performed over triples jkl, in which one site is connected with the other two [10]. In this case, \(\kappa \propto h^3\); more generally, if other inevitable perturbations are taken into account [28, 39], \(\kappa\) is linear in h with a small prefactor and anisotropic, cf. Section 4 for more details. Thus, we obtain Majorana fermions on a honeycomb lattice with nearest- and next-nearest-neighbor couplings (J- and \(\kappa\)-terms), cf. Equation (48) in Ref. [10].

This term (A6) also reduces to a term, quadratic in fermions, which couples next-nearest neighbors, \(\frac{i}{2}\kappa c_jc_l\), and the updated Hamiltonian (A2) involves the matrix

$$\begin{aligned} A(\textbf{q}) = \begin{pmatrix} \Delta (\textbf{q})&{}i f(\textbf{q})\\ -i f(-\textbf{q})&{}-\Delta (\textbf{q}) \end{pmatrix}\,. \end{aligned}$$
(A7)

Here \(\Delta (\textbf{q}) = 4\kappa [\sin (\textbf{qn}_1) + \sin (-\textbf{qn}_2) + \sin (\textbf{q}(\textbf{n}_2-\textbf{n}_1))]\). Near the nodes \(\pm \textbf{q}^*\) of the spectrum it reduces to

$$\begin{aligned} \varepsilon (\textbf{q}) \approx \pm \sqrt{3J^2\delta \textbf{q}^2 + \Delta ^2} \,, \ \delta \textbf{q}=\textbf{q} \mp \textbf{q}^* \,, \Delta =6\sqrt{3}\kappa \,. \end{aligned}$$
(A8)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoshuk, I., Makhlin, Y. Quantum Information Transmission with Topological Edge States. J Low Temp Phys (2024). https://doi.org/10.1007/s10909-024-03093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-024-03093-2

Keywords

Navigation