Skip to main content
Log in

Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Pyramid-type antireflective subwavelength structures for large-diameter (\(> 30\hbox { cm}\)) silicon lenses are promising for broadband astronomical observations. The refractive index and dielectric loss tangent of the lens material, columnar crystal silicon which is manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd., were measured at around 30 K using a Martin–Puplett-type Fourier transform spectrometer. The measured refractive index and dielectric loss tangent between 200 GHz and 1.6 THz were \(\sim \) 3.42 and 1–\(5 \times 10^{-4}\), respectively. Three different pyramid-type structures with a period of \(265\hbox { }\upmu \hbox {m}\) and depth of \(600\hbox { }\upmu \hbox {m}\) were simulated to obtain their reflectance using an electromagnetic field simulator, HFSS. The structures were fabricated on both sides of a 100-mm-diameter plane-convex lens made of columnar crystal silicon with a 150-mm radius of curvature using a metal-bonded V-shaped blade and a dedicated three-axis machine. The fabrication errors in the period and depth were less than \(10\hbox { }\upmu \hbox {m}\). The reflectance of the lens flat surface was measured using a vector network analyzer to be between \(-8\) and \(-17\) dB in the range of 110–170 GHz, which was consistent with the result from the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.D. Vieira et al., Astrophys. J. 719, 763–783 (2010)

    Article  ADS  Google Scholar 

  2. J.D. Vieira et al., Nature 495, 344–347 (2013)

    Article  ADS  Google Scholar 

  3. C.M. Casey, D. Narayanan, A. Cooray, Phys. Rep. 541, 45–161 (2014)

    Article  ADS  Google Scholar 

  4. C.-C. Chen et al., Astrophys. J. 820, 82 (2016)

    Article  ADS  Google Scholar 

  5. P.A.R. Ade et al., Astrophys. J. 806, 206 (2015)

    Article  ADS  Google Scholar 

  6. A. Suzuki et al., J. Low Temp. Phys. 184, 805–810 (2016)

    Article  ADS  Google Scholar 

  7. R.J. Thornton et al., Astrophys. J. Suppl. Ser. 227, 21 (2016)

    Article  ADS  Google Scholar 

  8. Y. Inoue et al., Proc. SPIE 9914, 99141I (2016)

    Article  Google Scholar 

  9. J.A. Grayson et al., Proc. SPIE 9914, 99140S (2016)

    Article  Google Scholar 

  10. A.J. Gatesman, J. Waldman, M. Ji, C. Musante, S. Yngvesson, IEEE Microw. Guid. Wave Lett. 10, 264–266 (2000)

    Article  Google Scholar 

  11. H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov, G. Golftsman, B. Voronov, E. Gershenzon, Infrared Phys. Technol. 42, 41–47 (2001)

    Article  ADS  Google Scholar 

  12. D. Rosen, A. Suzuki, B. Keating, W. Krantz, A.T. Lee, E. Quealy, P.L. Richards, P. Siritanasak, W. Walker, Appl. Opt. 52, 8102–8105 (2013)

    Article  ADS  Google Scholar 

  13. Y. Inoue, T. Matsumura, M. Hazumi, A.T. Lee, T. Okamura, A. Suzuki, T. Tomaru, H. Yamaguchi, Appl. Opt. 53, 1727–1733 (2014)

    Article  ADS  Google Scholar 

  14. O. Jeong, A. Lee, C. Raum, A. Suzuki, J. Low Temp. Phys. 184, 621–626 (2016)

    Article  ADS  Google Scholar 

  15. T. Nitta et al., J. Low Temp. Phys. 176, 677–683 (2014)

    Article  ADS  Google Scholar 

  16. A. Brahm et al., Appl. Opt. 53, 2886–2891 (2014)

    Article  ADS  Google Scholar 

  17. T. Matsumura et al., Appl. Opt. 55, 3502–3509 (2016)

    Article  ADS  Google Scholar 

  18. R. Datta et al., J. Low Temp. Phys. 184, 568–575 (2016)

    Article  ADS  Google Scholar 

  19. K. Young et al., J. Appl. Phys. 121, 213103 (2017)

    Article  ADS  Google Scholar 

  20. R. Datta et al., Appl. Opt. 52, 8747–8758 (2013)

    Article  ADS  Google Scholar 

  21. T. Nitta et al., IEEE Trans. THz Sci. Technol. 7, 295–301 (2017)

    Article  Google Scholar 

  22. S. Biber, J. Richter, S. Martius, L.-P. Schmidt, in 33rd Eur. Microwave Conference, pp. 1115 – 1118 (2003)

  23. http://www.mmc-ec.co.jp/eng/columnar-crystal-silicon/columnar-crystal-silicon/

  24. H. Matsuo, A. Sakamoto, S. Matsushita, Publ. Astron. Soc. Jpn. 50, 359–366 (1998)

    Article  ADS  Google Scholar 

  25. E.V. Loewenstein, D.R. Smith, Appl. Opt. 10, 577–583 (1971)

    Article  ADS  Google Scholar 

  26. J. Krupka, J. Breeze, A. Centeno, N. Alford, T. Claussen, L. Jensen, IEEE Trans. Microw. Theory Tech. 54, 3995–4001 (2006)

    Article  ADS  Google Scholar 

  27. D.H. Raguin, G.M. Morris, Appl. Opt. 32, 1154–1167 (1993)

    Article  ADS  Google Scholar 

  28. C. Brückner et al., Opt. Express 17, 3063–3077 (2009)

    Article  ADS  Google Scholar 

  29. ANSYS, HFSS 15.0, High Frequency Electromagnetic Field Simulation (2014)

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP25247022, JP26247019 and JP17H01115 and was achieved using the grant of Joint Development Research (FY2014 and FY2017) supported by the Research Coordination Committee, National Astronomical Observatory of Japan (NAOJ) and National Institutes of Natural Sciences (NINS). This work was also supported by Tokyo metropolitan government supporting funds for enhancement of competitiveness of small enterprises. The authors would like to thank Mitsubishi Materials Electronic Chemicals Co., Ltd. for providing the columnar crystal silicon samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nitta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitta, T., Sekimoto, Y., Hasebe, T. et al. Design, Fabrication and Measurement of Pyramid-Type Antireflective Structures on Columnar Crystal Silicon Lens for Millimeter-Wave Astronomy. J Low Temp Phys 193, 976–983 (2018). https://doi.org/10.1007/s10909-018-2047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2047-4

Keywords

Navigation