Skip to main content
Log in

A General Strategy to Achieve Colossal Permittivity and Low Dielectric Loss Through Constructing Insulator/Semiconductor/Insulator Multilayer Structures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, we propose a route to realize high-performance colossal permittivity (CP) by creating multilayer structures of insulator/semiconductor/insulator. To prove the new concept, we made heavily reduced rutile TiO2 via annealing route in Ar/H2 atmosphere. Dielectric studies show that the maximum dielectric permittivity (~ 3.0 × 104) of our prepared samples is about 100 times higher than that (~ 300) of conventional TiO2. The minimum dielectric loss is 0.03 (at 104–105 Hz). Furthermore, CP is almost independent of the frequency (100–106 Hz) and the temperature (20–350 K). We suggest that the colossal permittivity is attributed to the high carrier concentration of the inner TiO2 semiconductor, while the low dielectric loss is due to the presentation of the insulator layer on the surface of TiO2. The method proposed here can be expanded to other material systems, such as semiconductor Si sandwiched by top and bottom insulator layers of Ga2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.T. Buscaglia, M. Viviani, V. Buscaglia, L. Mitoseriu, A. Testino, P. Nanni, Z. Zhao, M. Nygren, C. Harnagea, D. Piazza, C. Galassi, Phys. Rev. B 73, 064114 (2006)

    Article  ADS  Google Scholar 

  2. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  ADS  Google Scholar 

  3. J.B. Wu, C.W. Nan, Y.H. Lin, Y. Deng, Phys. Rev. Lett. 89, 217601 (2002)

    Article  ADS  Google Scholar 

  4. S. Krohns, P. Lunkenheimer, Ch. Kant, A.V. Pronin, H.B. Brom, A.A. Nugroho, M. Diantoro, A. Loidl, Appl. Phys. Lett. 94, 122903 (2009)

    Article  ADS  Google Scholar 

  5. W.B. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Nat. Mater. 12, 821 (2013)

    Article  ADS  Google Scholar 

  6. M. Li, A. Feteira, D.C. Sinclair, A.R. West, Appl. Phys. Lett. 88, 232903 (2006)

    Article  ADS  Google Scholar 

  7. Y. Zhu, J.C. Zheng, L. Wu, A.I. Frenkel, J. Hanson, P. Northrup, W. Ku, Phys. Rev. Lett. 99, 037602 (2007)

    Article  ADS  Google Scholar 

  8. L. Zhang, Z.J. Tang, Phys. Rev. B 70, 174306 (2004)

    Article  ADS  Google Scholar 

  9. A.K. Jonscher, Nature 267, 673 (1997)

    Article  ADS  Google Scholar 

  10. M. Wuttig, D. Lusebrink, D. Wamwangi, W. Welnic, M. Gilleben, R. Dronskowski, Nat. Mater. 6, 122 (2007)

    Article  ADS  Google Scholar 

  11. N. Balke, B. Winchester, W. Ren, Y.H. Chu, A.N. Morozovska, E.A. Eliseev, M. Huijben, R.K. Vasudevan, P. Maksymovych, J. Britson, S. Jesse, I. Kornev, R. Ramesh, L. Bellaiche, L.Q. Chen, S.V. Kalinin, Nat. Phys. 8, 81 (2012)

    Article  Google Scholar 

  12. Y.L. Song, X.J. Wang, Y. Sui, Z.Y. Liu, Y. Zhang, H.S. Zhan, B.Q. Song, Z.G. Liu, Z. Lv, L. Tao, J.K. Tang, Sci. Rep. 6, 21478 (2016)

    Article  ADS  Google Scholar 

  13. J.L. Li, F. Li, X.H. Zhu, D.B. Lin, Q.F. Li, W.H. Liu, Z. Xu, J. Alloy. Compd. 692, 375 (2017)

    Article  Google Scholar 

  14. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

    Article  ADS  Google Scholar 

  15. W.B. Hu, K. Lau, Y. Liu, R.L. Withers, H. Chen, L. Fu, B. Gong, W. Hutchison, Chem. Mater. 27, 4934 (2015)

    Article  Google Scholar 

  16. W. Dong, W.B. Hu, A. Berlie, K. Lau, H. Chen, R.L. Withers, Y. Liu, ACS. Appl. Mater. Inter. 7, 25321 (2015)

    Article  Google Scholar 

  17. X.H. Wei, W.J. Jie, Z.B. Yang, F.G. Zheng, H.Z. Zeng, Y. Liu, J.H. Hao, J. Mater. Chem. C 3, 11005 (2015)

    Article  Google Scholar 

  18. R.A. Parker, Phys. Rev. 124, 1719 (1961)

    Article  ADS  Google Scholar 

  19. D.C. Cronemeyer, Phys. Rev. 113, 1222 (1959)

    Article  ADS  Google Scholar 

  20. M. Li, W. Hebenstreit, U. Diebold, A.M. Tyryshkin, M.K. Bowman, G.G. Dunham, M.A. Henderson, J. Phys. Chem. B 104, 4944 (2000)

    Article  Google Scholar 

  21. A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C.L. Bianchi, R. Psaro, V.D. Santo, J. Am. Chem. Soc. 134, 7600 (2012)

    Article  Google Scholar 

  22. G.S. Li, J. Boerio-Goates, B.F. Woodfield, L.P. Li, Appl. Phys. Lett. 85, 2059 (2004)

    Article  ADS  Google Scholar 

  23. M. Takeuchi, G. Martra, S. Coluccia, M. Anpo, J. Phys. Chem. C 111, 9811 (2007)

    Article  Google Scholar 

  24. R. Schaub, P. Thostrup, N. Lopez, E. Lægsgaard, I. Stensgaard, J.K. Nørskov, F. Besenbacher, Phys. Rev. Lett. 87, 266104 (2001)

    Article  ADS  Google Scholar 

  25. O. Bikondoa, C.L. Pang, R. Ithnin, C.A. Muryn, H. Onishi, G. Thornton, Nat. Mater. 5, 189 (2006)

    Article  ADS  Google Scholar 

  26. K. Maex, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma, Z.S. Yanovitskaya, J. Appl. Phys. 93, 8793 (2003)

    Article  ADS  Google Scholar 

  27. J.C. Slater, Phys. Rev. 78, 748 (1950)

    Article  ADS  Google Scholar 

  28. U. Robels, G. Arlt, J. Appl. Phys. 73, 3454 (1993)

    Article  ADS  Google Scholar 

  29. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313 (2012)

    Article  Google Scholar 

  30. T. Nachaithong, P. Kidkhunthod, P. Thongbai, S. Maensiri, J. Am. Ceram. Soc. 100, 1452 (2017)

    Article  Google Scholar 

  31. H.H. Tippins, Phy. Rev. 140, A316 (1965)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51272166), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and J. Hao acknowledges financial support from the grant Research Grants Council of Hong Kong (GRF No. PolyU 153004/14P).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengang Zheng or Jianhua Hao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3208 kb)

Supplementary material 2 (DOCX 13358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Sun, Y., Zheng, F. et al. A General Strategy to Achieve Colossal Permittivity and Low Dielectric Loss Through Constructing Insulator/Semiconductor/Insulator Multilayer Structures. J Low Temp Phys 192, 346–358 (2018). https://doi.org/10.1007/s10909-018-1985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1985-1

Keywords

Navigation